참고문헌
- Feng, S., Xiong, Z., Niyato, D., Wang, P., Wang, S. S., & Zhang, Y. (2018, December). Cyber risk management with risk aware cyber-insurance in blockchain networks. In 2018 IEEE Global Communications Conference (GLOBECOM) (pp. 1-7). IEEE.
- Ma, X., Guo, S., Li, H., Pan, Z., Qiu, J., Ding, Y., & Chen, F. (2019). How to make attention mechanisms more practical in malware classification. IEEE Access, 7, 155270-155280. https://doi.org/10.1109/ACCESS.2019.2948358
- Bozkir, A. S., Cankaya, A. O., & Aydos, M. (2019, April). Utilization and comparision of convolutional neural networks in malware recognition. In 2019 27th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
- Sriram, S., Vinayakumar, R., Sowmya, V., Alazab, M., & Soman, K. P. (2020, July). Multi-scale learning based malware variant detection using spatial pyramid pooling network. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 740-745). IEEE.
- Gupta, G. P., & Kulariya, M. (2016). A framework for fast and efficient cyber security network intrusion detection using apache spark. Procedia Computer Science, 93, 824-831. https://doi.org/10.1016/j.procs.2016.07.238
- Li, J. H. (2018). Cyber security meets artificial intelligence: a survey. Frontiers of Information Technology & Electronic Engineering, 19(12), 1462-1474. https://doi.org/10.1631/FITEE.1800573
- Sabar, N. R., Yi, X., & Song, A. (2018). A bi-objective hyper-heuristic support vector machines for big data cyber-security. Ieee Access, 6, 10421-10431. https://doi.org/10.1109/ACCESS.2018.2801792
- Cronin, G. (2002). A taxonomy of methods for software piracy prevention. Department of Computer Science, University of Auckland, New Zealand, Tech. Rep.
- Djekic, P., & Loebbecke, C. (2005, July). Software piracy prevention through digital rights management systems. In Seventh IEEE International Conference on E-Commerce Technology (CEC'05) (pp. 504-507). IEEE.
- Mishra, B. K., Raghu, T. S., & Prasad, A. (2005). Strategic analysis of corporate software piracy prevention and detection. Journal of Organizational Computing and Electronic Commerce, 15(3), 223-252. https://doi.org/10.1207/s15327744joce1503_3
- Sharma, V. K., Rizvi, S. A. M., & Hussain, S. Z. (2010). Distributed Co-ordinator Model for Optimal Utilization of Software and Piracy Prevention. International Journal of Computer Science and Security (IJCSS), 3(6), 550.
- Musman, S., & Turner, A. (2018). A game theoretic approach to cyber security risk management. The Journal of Defense Modeling and Simulation, 15(2), 127-146. https://doi.org/10.1177/1548512917699724
- Fielder, A., Panaousis, E., Malacaria, P., Hankin, C., & Smeraldi, F. (2016). Decision support approaches for cyber security investment. Decision support systems, 86, 13-23. https://doi.org/10.1016/j.dss.2016.02.012
- Feng, S., Wang, W., Xiong, Z., Niyato, D., Wang, P., & Wang, S. S. (2018). On cyber risk management of blockchain networks: A game theoretic approach. arXiv preprint arXiv:1804.10412.
- Dhamal, S., Ben-Ameur, W., Chahed, T., Altman, E., Sunny, A., & Poojary, S. (2018). A stochastic game framework for analyzing computational investment strategies in distributed computing. arXiv preprint arXiv:1809.03143.
- Kim, S. (2016). Group bargaining based bitcoin mining scheme using incentive payment process. Transactions on Emerging Telecommunications Technologies, 27(11), 1486-1495. https://doi.org/10.1002/ett.3078
- Shomer, A. (2014). On the Phase Space of Block-Hiding Strategies. IACR Cryptol. ePrint Arch., 2014, 139.
- Grover, M., Sharma, N., Bhushan, B., Kaushik, I., & Khamparia, A. (2020). Malware Threat Analysis of IoT Devices Using Deep Learning Neural Network Methodologies. In Security and Trust Issues in Internet of Things (pp. 123-143). CRC Press.
- Naeem, H. (2019). Detection of malicious activities in internet of things environment based on binary visualization and machine intelligence. Wireless Personal Communications, 108(4), 2609-2629. https://doi.org/10.1007/s11277-019-06540-6
- Aslan, O., & YILMAZ, A. A. (2021). A New Malware Classification Framework Based on Deep Learning Algorithms. IEEE Access.
- Bozkir, A. S., Cankaya, A. O., & Aydos, M. (2019, April). Utilization and comparision of convolutional neural networks in malware recognition. In 2019 27th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
- Ullah, F., Naeem, H., Jabbar, S., Khalid, S., Latif, M. A., Al-Turjman, F., & Mostarda, L. (2019). Cyber security threats detection in internet of things using deep learning approach. IEEE Access, 7, 124379-124389. https://doi.org/10.1109/ACCESS.2019.2937347
- Bandara, U., & Wijayrathna, G. (2012). Detection of source code plagiarism using machine learning approach. Int J Comput Theory Eng, 4(5), 674. https://doi.org/10.7763/IJCTE.2012.V4.555
- Haddi, E., Liu, X., & Shi, Y. (2013). The role of text pre-processing in sentiment analysis. Procedia Computer Science, 17, 26-32. https://doi.org/10.1016/j.procs.2013.05.005
- Liu, M., Shi, J., Li, Z., Li, C., Zhu, J., & Liu, S. (2016). Towards better analysis of deep convolutional neural networks. IEEE transactions on visualization and computer graphics, 23(1), 91-100.
- Hanif, M. S., & Bilal, M. (2020). Competitive residual neural network for image classification. ICT Express, 6(1), 28-37. https://doi.org/10.1016/j.icte.2019.06.001