DOI QR코드

DOI QR Code

Enhancing the ability of strain energy release rate criterion for fracture assessment of orthotropic materials under mixed-mode I/II loading considering the effect of crack tip damage zone

  • Khaji, Zahra (Faculty of New Sciences and Technologies, University of Tehran) ;
  • Fakoor, Mahdi (Faculty of New Sciences and Technologies, University of Tehran)
  • 투고 : 2021.07.27
  • 심사 : 2022.09.22
  • 발행 : 2022.09.25

초록

In this study, considering dissipated energy in fracture process zone (FPZ), a novel criterion based on maximum strain energy release rate (SER) for orthotropic materials is presented. General case of in-plane loading for cracks along the fibers is assumed. According to the experimental observations, crack propagation is supposed along the fibers and the reinforcement isotropic solid (RIS) concept is employed as a superior model for orthotropic materials. SER in crack initiation and propagation phases is investigated. Elastic properties of FPZ are extracted as a function of undamaged matrix media and micro-crack density. This criterion meaningfully links between dissipated energy due to toughening mechanisms of FPZ and the macroscopic fracture by defining stress intensity factors of the damaged zone. These coefficients are used in equations of maximum SER criterion. The effect of crack initiation angle and the damaged zone is considered simultaneously in this criterion and mode II stress intensity factor is extracted in terms of stress intensity factors of damage zone and crack initiation angle. This criterion can evaluate the effects of FPZ on the fracture behavior of orthotropic material. Good agreement between extracted fracture limit curves (FLC's) and available experimental data proves the ability of the new proposed criterion.

키워드

참고문헌

  1. Akbas, S.D. (2019), "Nonlinear behavior of fiber reinforced cracked composite beams", Steel Compos. Struct., 30(4), 327-336. https://doi.org/10.12989/scs.2019.30.4.327.
  2. Al-Fasih, M., Kueh, A., Abo Sabah, S. and Yahya, M. (2018), "Tow waviness and anisotropy effects on Mode II fracture of triaxially woven composite", Steel Compos. Struct., 26(2), 241-253. https://doi.org/10.12989/scs.2018.26.2.241.
  3. Amaral, L., Alderliesten, R. and Benedictus, R. (2017a), "Understanding mixed-mode cyclic fatigue delamination growth in unidirectional composites: An experimental approach", Eng. Fracture Mech., 180, 161-178. https://doi.org/10.1016/j.engfracmech.2017.05.049.
  4. Amaral, L., Zarouchas, D., Alderliesten, R. and Benedictus, R. (2017b), "Energy dissipation in mode II fatigue crack growth", Eng. Fracture Mech., 173, 41-54. https://doi.org/10.1016/j.engfracmech.2017.01.020.
  5. Amaral, L., Alderliesten, R. and Benedictus, R. (2018), "Towards a physics-based relationship for crack growth under different loading modes", Eng. Fracture Mech., 195, 222-241. https://doi.org/10.1016/j.engfracmech.2018.04.017.
  6. Anaraki, A.G. and Fakoor, M. (2010a), "General mixed mode I/II fracture criterion for wood considering T-stress effects", Mater. Des., 31(9), 4461-4469. https://doi.org/10.1016/j.matdes.2010.04.055.
  7. Anaraki, A.G. and Fakoor, M. (2010b), "Mixed mode fracture criterion for wood based on a reinforcement microcrack damage model", Mater. Sci. Eng.: A, 527(27-28), 7184-7191. https://doi.org/10.1016/j.msea.2010.08.004.
  8. Arakawa, K., Mada, T. and Takahashi, K. (2000), "Correlations among dynamic stress intensity factor, crack velocity and acceleration in brittle fracture", Int. J. Fract., 105(4), 311-320. https://doi.org/10.1023/A:1007654002732.
  9. Bellahcenea, T. and Aberkane, M. (2017), "Estimation of fracture toughness of cast steel container from Charpy impact test data", Steel Compos. Struct., 25(6), 639-648. https://doi.org/10.12989/scs.2017.25.6.639.
  10. Beylergil, B., Tanoglu, M. and Aktas, E. (2019), "Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils", Steel Compos. Struct, 31(2), 113-123. http://dx.doi.org/10.12989/scs.2019.31.2.113.
  11. Bouziane, S. and Bouzerd, H. (2020), "Computation of energy release rate for interfacial crack in orthotropic bimaterials", https://www.scipedia.com/public/Bouziane_Bouzerd_2020a.
  12. Braun, M. and Ariza, M. (2019a), "New lattice models for dynamic fracture problems of anisotropic materials", Compos. Part B: Eng., 172, 760-768. https://doi.org/10.1016/j.compositesb.2019.05.082.
  13. Braun, M. and Gonzalez Albuixech, V.F. (2019b), "Analysis of the stress intensity factor dependence with the crack velocity using a lattice model", Fatigue Fract. Eng. Mater. Struct., 42(5), 1075-1084. https://doi.org/10.1111/ffe.12971.
  14. Braun, M. and Ariza, M. (2020), "A progressive damage based lattice model for dynamic fracture of composite materials", Compos. Sci. Technol., 200, 108335. https://doi.org/10.1016/j.compscitech.2020.108335.
  15. Braun, M., Ivanez, I. and Ariza, M. (2021), "A numerical study of progressive damage in unidirectional composite materials using a 2D lattice model", Eng, Fract. Mech., 249, 107767. https://doi.org/10.1016/j.engfracmech.2021.107767.
  16. Budiansky, B. and O'connell, R.J. (1976), "Elastic moduli of a cracked solid", Int. J. Solids Struct., 12(2), 81-97. https://doi.org/10.1016/0020-7683(76)90044-5.
  17. Daneshjoo, Z., Amaral, L., Alderliesten, R., Shokrieh, M. and Fakoor, M. (2019), "Development of a physics-based theory for mixed mode I/II delamination onset in orthotropic laminates", Theoretic. Appl. Fract. Mech., 103, 102303. https://doi.org/10.1016/j.tafmec.2019.102303.
  18. Daneshjoo, Z., Shokrieh, M. and Fakoor, M. (2018), "A micromechanical model for prediction of mixed mode I/II delamination of laminated composites considering fiber bridging effects", Theoretic. Appl. Fract. Mech., 94, 46-56. https://doi.org/10.1016/j.tafmec.2017.12.002.
  19. Daneshjoo, Z., Shokrieh, M., Fakoor, M. and Alderliesten, R. (2018), "A new mixed mode I/II failure criterion for laminated composites considering fracture process zone", Theoretic. Appl. Fract. Mech., 98, 48-58. https://doi.org/10.1016/j.tafmec.2018.09.004.
  20. Daneshjoo, Z., Shokrieh, M. M., Fakoor, M., Alderliesten, R. and Zarouchas, D. (2019), "Physics of delamination onset in unidirectional composite laminates under mixed-mode I/II loading", Eng. Fract. Mech., 211, 82-98. https://doi.org/10.1016/j.engfracmech.2019.02.013.
  21. Dourado, N., Morel, S., De Moura, M., Valentin, G. and Morais, J. (2008), "Comparison of fracture properties of two wood species through cohesive crack simulations", Compos. Part A: Appl. Sci. Manufact., 39(2), 415-427. https://doi.org/10.1016/j.compositesa.2007.08.025.
  22. Erdogan, F. and Sih, G. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic Eng., 85(4), 519-525. https://doi.org/10.1115/1.3656897.
  23. Fakoor, M. (2017), "Augmented strain energy release rate (ASER): A novel approach for investigation of mixed-mode I/II fracture of composite materials", Eng. Fract. Mech., 179, 177-189. https://doi.org/10.1016/j.engfracmech.2017.04.049.
  24. Fakoor, M. and Farid, H.M. (2019), "Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials", Acta Mechanica, 230(1), 281-301. https://doi.org/10.1007/s00707-018-2308-y.
  25. Fakoor, M. and Ghoreishi, S.M.N. (2017), "Failure criterion for mixed mode fracture of cracked wood specimens", World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 11(7), 1364-1370. https://doi.org/10.5281/zenodo.1131501.
  26. Fakoor, M. and Ghoreishi, S.M.N. (2018), "Experimental and numerical investigation of progressive damage in composite laminates based on continuum damage mechanics", Polymer Testing, 70, 533-543. https://doi.org/10.1016/j.polymertesting.2018.08.013.
  27. Fakoor, M. and Ghoreishi, S.M.N. (2019), "Verification of a micro-mechanical approach for the investigation of progressive damage in composite laminates", Acta Mechanica, 230(1), 225-241. https://doi.org/10.1007/s00707-018-2313-1.
  28. Fakoor, M. and Khansari, N.M. (2016), "Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties", Eng. Fract. Mech., 153 , 407-420. https://doi.org/10.1016/j.engfracmech.2015.11.018.
  29. Fakoor, M. and Khansari, N.M. (2018a), "General mixed mode I/II failure criterion for composite materials based on matrix fracture properties", Theoretic. Appl. Fract. Mech., 96, 428-442. https://doi.org/10.1016/j.tafmec.2018.06.004.
  30. Fakoor, M. and Khansari, N.M. (2018b), "A new approach for investigation of mode II fracture toughness in orthotropic materials", Latin Amer. J. Solids Struct., 15(3). https://doi.org/10.1590/1679-78253979.
  31. Fakoor, M. and Khezri, M.S. (2020), "A micromechanical approach for mixed mode I/II failure assessment of cracked highly orthotropic materials such as wood", Theoretic. Appl. Fract. Mechanics, 109, 102740. https://doi.org/10.1016/j.tafmec.2020.102740.
  32. Fakoor, M. and Rafiee, R. (2013), "Transition angle, a novel concept for predicting the failure mode in orthotropic materials", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(10), 2157-2164. https://doi.org/10.1177/0954406212470905.
  33. Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.
  34. Fakoor, M., Sabour, M. and Khansari, N. (2014), "A new approach for investigation of damage zone properties in orthotropic materials", Eng. Solid Mech., 2(4), 283-292. https://doi.org/10.5267/j.esm.2014.8.004.
  35. Fakoor, M. and Shokrollahi, M.S. (2018), "A new macromechanical approach for investigation of damage zone effects on mixed mode I/II fracture of orthotropic materials", Acta Mech., 229(8), 3537-3556. https://doi.org/10.1007/s00707-018-2132-4.
  36. Farid, H.M. and Fakoor, M. (2019), "Mixed mode I/II fracture criterion for arbitrary cracks in orthotropic materials considering T-stress effects", Theoretic. Appl. Fract. Mech., 99, 147-160. https://doi.org/10.1016/j.tafmec.2018.11.015.
  37. Farid, H.M. and Fakoor, M. (2020), "Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials", Steel Compos. Structures, 34(5), 671-679. https://doi.org/10.12989/scs.2020.34.5.671.
  38. Gdoutos, E. (2012), "Crack growth instability studied by the strain energy density theory", Archiv. Appl. Mech., 82(10-11), 1361-1376. https://doi.org/10.1007/s00419-012-0690-9.
  39. Golewski, G.L. (2017a), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech, 62(1), 1-9. https://doi.org/10.12989/sem.2017.62.1.001.
  40. Golewski, G.L. (2017b), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civil Eng. Manage., 23(5), 613-620. https://doi.org/10.3846/13923730.2016.1217923.
  41. Golewski, G.L. (2017c), "Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure", Mater. Characteriz., 134, 335-346. https://doi.org/10.1016/j.matchar.2017.11.008.
  42. Golewski, G.L. (2018), "An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives", Compos. Struct., 200, 515-520. https://doi.org/10.1016/j.compstruct.2018.05.144.
  43. Golewski, G.L. (2019a), "A new principles for implementation and operation of foundations for machines: A review of recent advances", Struct. Eng. Mech., 71(3), 317-327. https://doi.org/10.12989/sem.2019.71.3.317.
  44. Golewski, G.L. (2019b), "The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits", Construct. Build. Mater., 197, 849-861. https://doi.org/10.1016/j.conbuildmat.2018.08.157.
  45. Golewski, G.L. (2019c), "Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures", Mater. Des. Processing Commun., 1(5), e82. https://doi.org/10.1002/mdp2.82.
  46. Golewski, G.L. (2021a), "The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading", Energies, 14(3), 668. https://doi.org/10.3390/en14030668.
  47. Golewski, G.L. and Gil, D.M. (2021b), "Studies of fracture toughness in concretes containing fly ash and silica fume in the first 28 days of curing", Mater., 14(2), 319. https://doi.org/10.3390/ma14020319.
  48. Golewski, G.L. (2021c), "Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method", Measurement, 109632. https://doi.org/10.1016/j.measurement.2021.109632.
  49. Golewski, G.L. (2021d), "Validation of the favorable quantity of fly ash in concrete and analysis of crack propagation and its length-Using the crack tip tracking (CTT) method-In the fracture toughness examinations under Mode II, through digital image correlation", Construct. Build. Mater., 296, 122362. https://doi.org/10.1016/j.conbuildmat.2021.122362.
  50. Griffith, A.A. (1921). VI, "The phenomena of rupture and flow in solids", Philosophic, Transact. Royal Soc. London. Series A, Containing Papers Mathem. Phys. Character, 221(582-593), 163-198. https://doi.org/10.1098/rsta.1921.0006.
  51. Horii, H. and Nemat-Nasser, S. (1983), "Overall moduli of solids with microcracks: load-induced anisotropy", Journal of the Mechanics and Physics of Solids, 31(2), 155-171. https://doi.org/10.1016/0022-5096(83)90048-0.
  52. Hua, W., Huang, J., Pan, X., Li, J. and Dong, S. (2020), "An extended maximum tangential strain energy density criterion considering T-stress for combined mode I-III brittle fracture", Fatigue Fract. Eng. Mater. Struct., 44(1), 169-181. https://doi.org/ 10.1111/ffe.13349.
  53. Hunt, D. and Croager, W. (1982), "Mode II fracture toughness of wood measured by a mixed-mode test method", J. Mater. Sci. Lett., 1(2), 77-79. https://doi.org/10.1007/BF00731031.
  54. Hussain, M., Pu, S. and Underwood, J. (1974), "Strain energy release rate for a crack under combined mode I and mode II", Paper presented at the Fracture analysis: Proceedings of the 1973 national symposium on fracture mechanics, part II. https://doi.org/10.1520/STP33130S.
  55. Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack transversing a plate", Trans. ASME, Ser. E, J. Appl. Mech., 24, 361-364. https://doi.org/10.1115/1.4011547.
  56. Jernkvist, L.O. (2001a), "Fracture of wood under mixed mode loading: I. Derivation of fracture criteria", Eng. Fract. Mech., 68(5), 549-563. https://doi.org/10.1016/S0013-7944(00)00127-2.
  57. Jernkvist, L.O. (2001b), "Fracture of wood under mixed mode loading: II. Experimental investigation of Picea abies", Eng. Fract. Mech., 68(5), 565-576. https://doi.org/10.1016/S0013-7944(00)00128-4.
  58. Khaji, Z. and Fakoor, M. (2021), "Strain energy release rate in combination with Reinforcement Isotropic Solid Model (SERIS): A new mixed-mode I/II criterion to investigate fracture behavior of orthotropic materials", Theoretic. Appl. Fract. Mech., 102962. https://doi.org/10.1016/j.tafmec.2021.102962.
  59. Khaji, Z. and Fakoor, M. (2022a), "A Semi-theoretical criterion based on the combination of strain energy release rate and strain energy density concepts (STSERSED): Establishment of a new approach to predict the fracture behavior of orthotropic materials", Theoretic. Appl. Fract. Mech., 118, 103290. https://doi.org/10.1016/j.tafmec.2022.103290.
  60. Khaji, Z., Fakoor, M., Farid, H.M. and Alderliesten, R. (2022b), "Applying the new experimental midpoint concept on strain energy density for fracture assessment of composite materials", Theoretic. Appl. Fract. Mech., 103522 https://doi.org/10.1016/j.tafmec.2022.103522.
  61. Khansari, N.M., Fakoor, M. and Berto, F. (2019), "Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials", Theoretic. Appl. Fract. Mech., 99, 177-193. https://doi.org/10.1016/j.tafmec.2018.12.003.
  62. Kharazan, M., Sadr, M. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., 17(4), 387-403. http://dx.doi.org/10.12989/scs.2014.17.4.387.
  63. Li, X., Liang, Y., Luo, Y. and Ai, C. (2020), "Predicting hydraulic fracture propagation based on maximum energy release rate theory with consideration of T-stress", Fuel, 269, 117337. https://doi.org/10.1016/j.fuel.2020.117337.
  64. Li, Y., Dai, F., Wei, M. and Du, H. (2020), "Numerical investigation on dynamic fracture behavior of cracked rocks under mixed mode I/II loading", Eng. Fract. Mech., 235, 107176. https://doi.org/10.1016/j.engfracmech.2020.107176.
  65. Mall, S., Murphy, J.F. and Shottafer, J.E. (1983), "Criterion for mixed mode fracture in wood", J. Eng. Mech., 109(3), 680-690. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(680).
  66. Meng, T., Guangwu, X., Jiwei, M., Yang, Y., Liu, W., Zhang, J. and Ren, G. (2020), "Mixed mode fracture tests and inversion of FPZ at crack tip of overlying strata in underground coal gasification combustion cavity under real-time high temperature condition", Eng. Fract. Mech., 239, 107298. https://doi.org/10.1016/j.engfracmech.2020.107298.
  67. Mroz, Z. and Seweryn, A. (1998), "Non-local failure and damage evolution rule: Application to a dilatant crack model", Le Journal de Physique IV, 8(PR8), Pr8-257-Pr258-268. https://doi.org/10.1051/jp4:1998832.
  68. Nobile, L. and Carloni, C. (2005), "Fracture analysis for orthotropic cracked plates", Compos. Struct., 68(3), 285-293. https://doi.org/10.1016/j.compstruct.2004.03.020.
  69. Rizov, V.I. (2017), "Non-linear study of mode II delamination fracture in functionally graded beams", Steel Compos. Struct., 23(3), 263-271. https://doi.org/10.12989/scs.2017.23.3.263.
  70. Romanowicz, M. (2019), "A non-local stress fracture criterion accounting for the anisotropy of the fracture toughness", Eng. Fract. Mech., 214, 544-557. https://doi.org/10.1016/j.engfracmech.2019.04.033.
  71. Romanowicz, M. and Seweryn, A. (2008), "Verification of a nonlocal stress criterion for mixed mode fracture in wood", Eng. Fract. Mech., 75(10), 3141-3160. https://doi.org/10.1016/j.engfracmech.2007.12.006.
  72. Saouma, V.E., Ayari, M.L. and Leavell, D.A. (1987), "Mixed mode crack propagation in homogeneous anisotropic solids", Eng. Fract. Mech., 27(2), 171-184. https://doi.org/10.1016/0013-7944(87)90166-4.
  73. Shahsavar, S., Fakoor, M. and Berto, F. (2020), "Verification of reinforcement isotropic solid model in conjunction with maximum shear stress criterion to anticipate mixed mode I/II fracture of composite materials", Acta Mechanica, 231(12), 5105-5124. https://doi.org/10.1007/s00707-020-02810-8.
  74. Sih, G.C. (1974), "Strain-energy-density factor applied to mixed mode crack problems", Int. J. Fract., 10(3), 305-321. https://doi.org/10.1007/BF00035493.
  75. Sun, B. and Xu, Z. (2020), "A minimum Lemaitre's damage strain energy release rate-based model for competitive fracture process simulation of quasi-brittle materials", Theoretic. Appl. Fract. Mech., 109, 102705. https://doi.org/10.1016/j.tafmec.2020.102705.
  76. Szostak, B. and Golewski, G.L. (2020), "Improvement of strength parameters of cement matrix with the addition of siliceous fly ash by using nanometric CSH seeds", Energies, 13(24), 6734. https://doi.org/10.3390/en13246734.
  77. Tan, D., Stanzl-Tschegg, S. and Tschegg, E. (1995), "Models of wood fracture in Mode I and Mode II", Holz als Roh-und Werkstoff, 53(3), 159-164. https://doi.org/10.1007/BF02716417.
  78. Van der Put, T. (2007), "A new fracture mechanics theory for orthotropic materials like wood", Eng. Fract. Mech., 74(5), 771-781. https://doi.org/10.1016/j.engfracmech.2006.06.015.
  79. Wu, E. (1967), "Application of fracture mechanics to anisotropic plates", J. Appl. Mech., 34(4), 967-974. https://doi.org/10.1115/1.3607864.
  80. Wu, J., Gao, J., Feng, Z., Chen, S. and Nie, T. (2020), "Investigation of fracture process zone properties of mode I fracture in heat-treated granite through digital image correlation", Eng. Fract. Mech., 235, 107192. https://doi.org/10.1016/j.engfracmech.2020.107192.
  81. Wu, Z.-M., Rena, C. Y., Sun, C.-Y., Wang, Y.-J., Zhang, X.-X. and Fei, X.-D. (2020), "A new test method for the complete loaddisplacement curve of concrete under mixed mode I-II fracture", Theoretic. Appl. Fract. Mech., 108, 102629. https://doi.org/10.1016/j.tafmec.2020.102629.
  82. Yang, S. and Yuan, F.G. (2000), "Kinked crack in anisotropic bodies", Int. J. Solids Struct., 37(45), 6635-6682. https://doi.org/10.1016/S0020-7683(99)00222-X.
  83. Yoshihara, H. and Kawamura, T. (2006), "Mode I fracture toughness estimation of wood by DCB test", Compos. Part A: Appl. Sci. Manufact., 37(11), 2105-2113. https://doi.org/10.1016/j.compositesa.2005.12.001.
  84. Yoshihara, H. and Maruta, M. (2019), "Mode II fracture mechanics properties of solid wood measured by the tensile-and compressive-loading shear fracture tests", Eng. Fract. Mech., 213, 72-88. https://doi.org/10.1016/j.engfracmech.2019.03.046.
  85. Yuan, M., Zhao, H., Tian, L., Zhang, B., Yang, Y., Chen, J. and Chen, J.A. (2021), "Comparison of mixed mode fracture criteria in finite element analysis for matrix crack density estimation of laminated composites", J. Compos. Mater., 0021998320948246. https://doi.org/10.1177/0021998320948246.
  86. Zhang, S., Jang, B., Valaire, B. and Suhling, J. (1989), "A new criterion for composite material mixed mode fracture analysis", Eng. Fract. Mech., 34(3), 749-769. https://doi.org/10.1016/0013-7944(89)90136-7.
  87. Zhiming, Y. and Ayari, M. (1994), "Prediction of crack propagation in anisotropic solids", Eng. Fract. Mech., 49(6), 797-808. https://doi.org/10.1016/0013-7944(94)90017-5.
  88. Zhou, F., Molinari, J.F. and Shioya, T. (2005), "A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials", Eng. Fract. Mech., 72(9), 1383-1410. https://doi.org/10.1016/j.engfracmech.2004.10.011.