과제정보
본 연구는 2020년도 중소기업기술혁신개발사업의 재원으로 중소벤처기업부(TIPA)의 지원을 받아 수행한 연구과제입니다. (No. S2866138 반지도 학습 머신러닝을 이용한 해상풍력용 복합 설비안전 진단 시스템의 개발)
참고문헌
- Xiaojin Zhu, 2006, Semi-Supervised Learning Literature Survey, Computer Sciences TR 1530, University of Wisconsin - Madison.
- Razieh Sheikhpour, Mehdi Agha Sarram, Sajjad Gharaghani, and Mohammad Ali Zare Chahooki, 2017, "A survey on semi-supervised feature selection methods", Pattern Recognition 64, pp. 141~158.
- Hongyu Zhu and Xizhao Wang, 2017, "A cost-sensitive semi-supervised learning model based on uncertainty", Neurocomputing 251, pp. 106~114.
- Jung S. M and Choi W. J., 2022, "A Study on Deep Learning-based Fault Diagnosis using Vibration Data of Wind Generator", pp. 129~136 (in Korean), http://dx.doi.org/10.14801/jkiit.2022.20.6.129
- Lee D. H., Seo Y. H., Kim Y. K., and Kang J. G., 2019, "CMS Commissioning and Alarm Setting for Offshore Wind Turbine Diagnosis", pp.43~49 (in Korean), https://www.doi.org/10.33519/kwea.2019.10.4.006
- Shao Haidong, Jiang Hongkai, Zhao Huiwei, and Wang Fuan, 2017, "A novel deep autoencoder feature learning method for rotating machinery fault diagnosis", Mechanical Systems and Signal Processing 95, pp.187~204.
- Mohammakazem Sadoughi, Austin Downey, Garrett Bunge, Aditya Ranawat, Chao Hu, and Simon Laflamme, 2018, "A Deep Learning-based Approach for Fault Diagnosis of Roller Element Bearings", Annual Conference of the Prognostics and Health Management Society. 10(1).https://doi.org/10.36001/phmconf.2018.v10il.526