DOI QR코드

DOI QR Code

A Study on the Design Concept and Modeling Method for Reinforcement Structures of Lightweight Wind Turbine Blades

풍력터빈 블레이드 경량화를 위한 보강구조 설계 개념 및 모델링 방법론 연구

  • Woo-Kyoung Lee ;
  • Min-Gyu Kang ;
  • Jisang Park ;
  • Jin Bum Moon
  • 이우경 (한국재료연구원, 복합재료연구본부) ;
  • 강민규 (한국재료연구원, 복합재료연구본부) ;
  • 박지상 (한국재료연구원, 복합재료연구본부) ;
  • 문진범 (한국재료연구원, 복합재료연구본부)
  • Received : 2022.02.18
  • Accepted : 2022.03.23
  • Published : 2022.06.30

Abstract

The rated power and rotor diameters of wind turbines are significantly increasing for maximized energy production and minimized LCoE, especially for offshore wind turbines. Along with this, the loads and weight of rotor blades are inevitably increasing. Therefore, designers are striving to develop light structures by reducing unnecessary materials for the blades. However, designers have to develop a novel design concept to increase the critical buckling load since lightweight designs compromise the critical buckling load, which is frequently the critical design point for ultra-large wind turbine blades. In this paper, the concept of local reinforcement is introduced as a new structural design concept to increase the buckling load. Moreover, its verification procedure and modeling methodology were studied and verified by application to a 3 MW wind turbine blade.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 재원으로 한국에너지기술평가원의 지원을 받아 수행한 신재생에너지핵심기술사업(No.20193010025810, No.20183010025150)의 연구결과 입니다.

References

  1. W. K. Lee, M. G. Kang, and J. S. Park, 2020, "A Study on The Design Concept of Reinforcement Structures for Lightweight Wind Blades," The 2020 Fall Conference of Korea Wind Energy Association, pp. 224~225 (in Korean).
  2. M. G. Kang, J. S. Park, S. H. Yoon, W. K. Lee, J. B. Moon, H. K. Jang, and J. H. Lee, 2018, "Development of the design and modeling methodology for ultra-large scale wind turbine blade," The 2018 Fall Conference of Korea Wind Energy Association, pp. 126~128 (in Korean).
  3. H. K. Shin, 2019, "Floating Offshore Wind Energy Generation," Wind Energy Journal, Vol. 10, No. 4, pp. 5~12.
  4. J. S. Park, J. B. Kim, J. B. Moon, H. K. Jang, S. H. Yoon, J. H. Kim, W. K. Lee, M. G. Kang, and S. I. Lee, 2018, "Challenges of composite rotor blade technology for next-generation large wind turbines," The 2018 Fall Conference of Korea Wind Energy Association, pp. 135~136 (in Korean).
  5. H. J. Kim, Y. J. Jang, C. W. Choi and K. W. Kang, 2021, "Analysis of Vibration Behavior of Composite Blade Using PRT sensor and High-Speed Camera," Wind Energy Journal, Vol. 12, No. 4, pp. 70~76.
  6. H. G. Kim, Y. J. Jang and K. W. Kang, 2021, "Evaluation of Interlayer Fracture Toughness of Laminated Biaxial/Triaxial Hybrid Composite for Wind Turbine Blade," Wind Energy Journal, Vol. 12, No. 3, pp. 68~79.
  7. J. B. Moon, J. H. Kim, H. K. Jang, and J. S. Park, 2017, "A Study on Calculation of Composites Lamina Material Properties through Reverse Engineering of Light Weight Composite Car-body," Transactions of KSAE, Vol.25, No.1, pp.1~10.
  8. Carl T. Herakovich, 1998, "Mechanics of Fibrous Composites", John Wiley & Sons, Inc..
  9. Laszlo P. Kollar, George S. Springer, 2002, "Mechanics of Composite Structures", Cambridge.
  10. GERMANISCHER LLOYD, 2012, "Guideline for the Certification of Offshore Wind Turbines", pp.5-25~5-27.