DOI QR코드

DOI QR Code

Surface removal of stainless steel using a single-mode continuous wave fiber laser to decontaminate primary circuits

  • Received : 2022.01.13
  • Accepted : 2022.03.28
  • Published : 2022.09.25

Abstract

Removing radioactive contaminated metal materials is a vital task during the decommissioning of nuclear power plants to reduce the cost of the post-dismantling process. The laser decontamination technique has been recognized as a key tool for a successful dismantling process as it enables a remote operation in radioactive facilities. It also minimizes exposure of workers to hazardous materials and reduces secondary waste, increasing the environmental friendless of the post-dismantling processing. In this work, we present a thorough and efficient laser decontamination approach using a single-mode continuous-wave (CW) laser. We subjected stainless steels to a surface-removal process that repetitively exposes the laser to a confined region of ~75 ㎛ at a high scanning rate of 10 m/s. We evaluate the decontamination performance by measuring the removal depth with a 3D scanning microscope and further investigate optimal removal conditions given practical parameters such as the laser power and scan properties. We successfully removed the metal surface to a depth of more than 40 ㎛ with laser power of 300 W and ten scans, showing the potential to achieve an extremely high DF more than 1000 by simply increasing the number of scans and the laser power for the decontamination of primary circuits.

Keywords

Acknowledgement

This research was supported by the Korea Atomic Energy Research Institute (KAERI) granted funding by the Korean government [Project No. 79771-21].

References

  1. J.P. Nilaya, P. Raote, A. Kumar, D.J. Biswas, Laser-assisted decontaminationda wavelength dependent study, Appl. Surf. Sci. 254 (2008) 7377-7380. https://doi.org/10.1016/j.apsusc.2008.05.348
  2. Ph Delaporte, M. Gastaud, W. Marine, M. Sentis, O. Uteza, P. Thouvenot, J.L. Alcaraz, J.M. Samedy, D. Blin, Dry excimer laser cleaning applied to unclear decontamination, Appl. Surf. Sci. 208 (2003) 298-305.
  3. P.J. Maziasz, J.T. Busby, Jeremy, Properties of Austenitic Steels for Nuclear Reactor Applications, Elsevier, England, 2012, pp. 267-283.
  4. L.E. Boing, Decommissioning of nuclear facilities decontamination technologies, in: R2D2 Project Workshop, 2006. Manila, Philippines, October 16-20.
  5. V. Kumar, R. Goel, R. Chawla, M. Silambarasan, R.K. Sharma, Chemical, biological, radiological, and nuclear decontamination: recent trends and future perspective, J. Pharm. BioAllied Sci. 2 (2010) 220-238. https://doi.org/10.4103/0975-7406.68505
  6. L. Carvalho, W. Pacquentin, M. Tabarant, A. Semerok, H. Maskrot, Metal decontamination by high repetition rate nanosecond fiber laser: application to oxidized and Eu-contaminated stainless steel, Appl. Surf. Sci. 526 (2020), 146654. https://doi.org/10.1016/j.apsusc.2020.146654
  7. A.J. Potiens Jr., J.C. Dellamano, R. Vicente, M.P. Raele, N.U. Wetter, E. Landulfo, Laser decontamination of the radioactive lightning rods, Radiat. Phys. Chem. 95 (2014) 188-190. https://doi.org/10.1016/j.radphyschem.2013.03.043
  8. G. Greifzu, T. Kahl, M. Herrmann, W. Lippmann, A. Hurtado, Laser-based decontamination of metal surfaces, Opt Laser. Technol. 117 (2019) 293-298. https://doi.org/10.1016/j.optlastec.2019.04.037
  9. A. Kumar, T. Prakash, M. Prasad, S. Shail, R.B. Bhatt, P.G. Behere, D.J. Biswas, Laser assisted removal of fixed radioactive contamination from metallic substrate, Nucl. Eng. Des. 320 (2017) 183-186. https://doi.org/10.1016/j.nucengdes.2017.06.003
  10. Y. Lin, Y. Huang, A. Chiang, A compact and portable laser radioactive decontamination system using passive Q-switched fiber laser and polygon scanner, Appl. Radiat. Isot. 153 (2019), 108835. https://doi.org/10.1016/j.apradiso.2019.108835
  11. E.J. Minehara, A new laser decontamination device, Rev. Laser Eng. 40 (2011) 165-170. https://doi.org/10.2184/lsj.40.3_165
  12. E.J. Minehara, K. Tamura, Laser cleaning trials for the heavily radioisotopecontaminated stainless-steel samples in the primary cooling loop of the nuclear reactor, J. RANDEC 48 (2013) 47-55.
  13. G. Guerrero-Vaca, O. Rodriguez-Alabanda, P.E. Romero, C. Soriano, E. Molero, J. Lambarri, Stripping of PFA Fluoropolymer Coatings Using a Nd:YAG Laser (Q-Switch) and an Yb Fiber Laser (CW), vol. 11, 2019, p. 1738.
  14. J. Min, H. Wan, B.E. Carlson, J. Lina, C. Suna, Application of laser ablation in adhesive bonding of metallic materials: a review, Opt Laser. Technol. 128 (2020), 106188. https://doi.org/10.1016/j.optlastec.2020.106188
  15. K.H. Leong, B.V. Hunter, J.E. Grace, M.J. Pellin, H.F. Leidich, T.R. Kugler, Laserbased Characterization and Decontamination of Contaminated Facilities, Argonne National Lab, United States, ICALEO A85, 1996.
  16. R.L. Demmer, R.L. Ferguson, Testing and Evaluation of Light Ablation Decontamination, Idaho National Engineering Laboratory, United States, INEL, 1994, 94/1034.
  17. L. Li, W.M. Steen, P.J. Modern, J.T. Spencer, Laser removal of surface and embedded contaminations on/in building structures, Lasers Mater. Process. Machin. SPIE 2246 (1994).
  18. L. Carvalho, W. Pacquentin, M. Tabarant, H. Maskrot, A. Semerok, Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces, EPJ Nucl. Sci. Technol. 3 (2017) 3. https://doi.org/10.1051/epjn/2016040