DOI QR코드

DOI QR Code

Integrated Whole-Cell Biocatalysis for Trehalose Production from Maltose Using Permeabilized Pseudomonas monteilii Cells and Bioremoval of Byproduct

  • Trakarnpaiboon, Srisakul (Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology) ;
  • Champreda, Verawat (Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology)
  • Received : 2022.02.21
  • Accepted : 2022.05.13
  • Published : 2022.08.28

Abstract

Trehalose is a non-conventional sugar with potent applications in the food, healthcare and biopharma industries. In this study, trehalose was synthesized from maltose using whole-cell Pseudomonas monteilii TBRC 1196 producing trehalose synthase (TreS) as the biocatalyst. The reaction condition was optimized using 1% Triton X-100 permeabilized cells. According to our central composite design (CCD) experiment, the optimal process was achieved at 35℃ and pH 8.0 for 24 h, resulting in the maximum trehalose yield of 51.60 g/g after 12 h using an initial cell loading of 94 g/l. Scale-up production in a lab-scale bioreactor led to the final trehalose concentration of 51.91 g/l with a yield of 51.60 g/g and productivity of 4.37 g/l/h together with 8.24 g/l glucose as a byproduct. A one-pot process integrating trehalose production and byproduct bioremoval showed 53.35% trehalose yield from 107.4 g/l after 15 h by permeabilized P. moteilii cells. The residual maltose and glucose were subsequently removed by Saccharomyces cerevisiae TBRC 12153, resulting in trehalose recovery of 99.23% with 24.85 g/l ethanol obtained as a co-product. The present work provides an integrated alternative process for trehalose production from maltose syrup in bio-industry.

Keywords

Acknowledgement

This project was supported by a research grant from the National Science and Technology Development Agency, Thailand (Grant No. P-18-52705).

References

  1. Schiraldi C, Di Lernia I, De Rosa M. 2002. Trehalose production: exploiting novel approaches. Trends Biotechnol. 20: 420-425. https://doi.org/10.1016/S0167-7799(02)02041-3
  2. Ohtake S and YJ Wang. 2011. Trehalose: current use and future applications. J. Pharm. Sci. 100: 2020-2053. https://doi.org/10.1002/jps.22458
  3. Liu H, S Yang, Q Liu, R Wang and T Wang. 2018. A process for production of trehalose by recombinant trehalose synthase and its purification. Enzyme Microb. Technol. 113: 83-90. https://doi.org/10.1016/j.enzmictec.2017.11.008
  4. Cai X, I Seitl, W Mu, T Zhang, T Stressler, L Fischer, et al. 2018. Biotechnical production of trehalose through the trehalose synthase pathway: current status and future prospects. Appl. Microbiol. Biotechnol. 102: 2965-2976. https://doi.org/10.1007/s00253-018-8814-y
  5. Sun J, S Wang, W Li, R Li, S Chen, HI Ri, et al. 2018. Improvement of trehalose production by immobilized trehalose synthase from Thermus thermophilus HB27. Molecules 23: 1087. https://doi.org/10.3390/molecules23051087
  6. Gao Y, Y Xi, XL Lu, H Zheng, B Hu, XY Liu, et al. 2013. Cloning, expression and functional characterization of a novel trehalose synthase from marine Pseudomonas sp. P8005. World J. Microbiol. Biotechnol. 29: 2195-2206. https://doi.org/10.1007/s11274-013-1385-2
  7. Li Y, X Sun, Y Feng, Q Yuan. 2015. Cloning, expression and activity optimization of trehalose synthase from Thermus thermophilus HB27. Chem. Eng. Sci. 135: 323-329. https://doi.org/10.1016/j.ces.2015.02.034
  8. Wang, J., X. Ren, R. Wang, J. Su, and F. Wang. 2017. Structural characteristics and function of a new kind of thermostable trehalose synthase from Thermobaculum terrenum. J. Agric. Food Chem. 65: 7726-7735. https://doi.org/10.1021/acs.jafc.7b02732
  9. Park CS, CS Park, KC Shin, DK Oh. 2016. Production of d-psicose from d-fructose by whole recombinant cells with high-level expression of d-psicose 3-epimerase from Agrobacterium tumefaciens. J. Biosci. Bioeng. 121: 186-190. https://doi.org/10.1016/j.jbiosc.2015.06.010
  10. Park CS, T Kim, SH. Hong, KC Shin, KR Kim, DK Oh. 2016. D-Allulose production from D-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing D-allulose 3-epimerase flavonifractor plautii. PLoS One 11: e0160044. https://doi.org/10.1371/journal.pone.0160044
  11. Zheng Z, Y Xu, Y Sun, W Mei, J Ouyang. 2015. Biocatalytic production of trehalose from maltose by using whole cells of permeabilized recombinant Escherichia coli. PLoS One 10: e0140477. https://doi.org/10.1371/journal.pone.0140477
  12. Song X, S Tang, L Jiang, L Zhu, H Huang. 2016. Integrated biocatalytic process for trehalose production and separation from maltose. Ind. Eng. Chem. Res. 55: 10566-10575. https://doi.org/10.1021/acs.iecr.6b02276
  13. Burdock GA, IG Carabin. 2004. Generally recognized as safe (GRAS): history and description. Toxicol. Lett. 150: 3-18. https://doi.org/10.1016/j.toxlet.2003.07.004
  14. Trakarnpaiboon S, B Bunterngsook, R Wansuksriand, V Champreda. 2021. Screening, cloning, expression and characterization of new alkaline trehalose synthase from Pseudomonas monteilii and its application for trehalose production. J. Microbiol. Biotechnol. 31: 1455-1464. https://doi.org/10.4014/jmb.2106.06032
  15. Shin K-C, D-H Sim, M.-J Seo, D-K Oh. 2016. Increased production of food-grade d-tagatose from d-galactose by permeabilized and immobilized cells of Corynebacterium glutamicum, a GRAS host, expressing d-galactose isomerase from Geobacillus thermodenitrificans. J. Agric. Food Chem. 64: 8146-8153. https://doi.org/10.1021/acs.jafc.6b03588
  16. Kuschel B, I Seitl, C Gluck, W Mu, B Jiang, T Stressler, et al. 2017. Hidden reaction: Mesophilic cellobiose 2-epimerases produce lactulose. J. Agric. Food Chem. 65: 2530-2539. https://doi.org/10.1021/acs.jafc.6b05599
  17. Dong Y, L Ma, Y Duan. 2016. The effect of high pressure on the intracellular trehalose synthase activity of Thermus aquaticus. World J. Microbiol. Biotechnol. 32: 11. https://doi.org/10.1007/s11274-015-1958-3
  18. Yan-Rui, Y, Zhu Yi, Li Li-Li. 2010. Response of metabolic pathway of trehalose in heat-resistant yeast Saccharomyces cerevisiae to heat stress. J. South China Univ. Technol. 38: 139-143.
  19. Duan ZY, He W, Li ZN, Mao ZG. 2007. Effect of heat shock treatment on trehalose synthase of Pseudomonas putida S1. Chin J Bioprocess Eng. 5: 31-33.
  20. Yuan Y, and E Heinzle. 2009. Permeabilization of Corynebacterium glutamicum for NAD(P)H-dependent intracellular enzyme activity measurement. C. R. Chim. 12: 1154-1162. https://doi.org/10.1016/j.crci.2009.09.006
  21. Liu S, C Guo, X Liang, F Wu, Z Dang. 2016. Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. Ecotoxicol. Environ. Saf. 129: 210-218. https://doi.org/10.1016/j.ecoenv.2016.03.035
  22. An J-U, Y-C Joo, D-K Oh. 2013. New biotransformation process for production of the fragrant compound γ-dodecalactone from 10- hydroxystearate by permeabilized Waltomyces lipofer cells. Appl. Environ. Microbiol. 79: 2636-2641. https://doi.org/10.1128/AEM.02602-12
  23. Longtao ZHANG BJ, Wanmeng MU, Tao ZHANG. 2009. Bioproduction of D -psicose using permeabilized cells of newly isolated Rhodobacter sphaeroides SK011. Front. Chem. Eng. China. 3: 393-398. https://doi.org/10.1007/s11705-009-0252-z
  24. Ma Y, L Xue, D-W Sun. 2006. Characteristics of trehalose synthase from permeablized Pseudomonas putida cells and its application in converting maltose into trehalose. J. Food Eng. 77: 342-347. https://doi.org/10.1016/j.jfoodeng.2005.06.042
  25. Zhan S, Y Yang, X Gao, H Yu, S Yang, D Zhu, Y Li. 2014. Rapid degradation of toxic toluene using novel mesoporous SiO2 doped TiO2 nanofibers. Catal. Today 225: 10-17. https://doi.org/10.1016/j.cattod.2013.08.018
  26. Faghihi-Zarandi A, H Shirkhanloo, C Jamshidzadeh. 2019. A new method for removal of hazardous toluene vapor from air based on ionic liquid-phase adsorbent. Int. J. Environ. Sci. Technol. 16: 2797-2808. https://doi.org/10.1007/s13762-018-1975-5
  27. Chen Y-S, G-C Lee, J-F Shaw. 2006. Gene coning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J. Agric. Food Chem. 54: 7098-7104. https://doi.org/10.1021/jf060828q
  28. Yue M, XL Wu, WN Gong, HB Ding. 2009. Molecular cloning and expression of a novel trehalose synthase gene from Enterobacter hormaechei. Microb. Cell Fact. 8: 34. https://doi.org/10.1186/1475-2859-8-34
  29. Xiuli W, D Hongbiao, Y Ming, Q Yu. 2009. Gene cloning, expression, and characterization of a novel trehalose synthase from Arthrobacter aurescens. Appl. Microbiol. Biotechnol. 83: 477-482. https://doi.org/10.1007/s00253-009-1863-5
  30. Pawel F, O Pietrow, A Panek, J Synowiecki. 2012. Properties of recombinant trehalose synthase from Deinococcus radiodurans expressed in Escherichia coli. Acta Biochim. Pol. 59: 425-431.
  31. Zhu Y, D Wei, J Zhang, Y Wang, H Xu, L Xing, M Li. 2010. Overexpression and characterization of a thermostable trehalose synthase from Meiothermus ruber. Extremophiles. 14: 1-8. https://doi.org/10.1007/s00792-009-0281-z
  32. Wei Y-T, Q-X Zhu, Z-F Luo, F-S Lu, F-Z Chen, Q-Y Wang, et al. 2004. Cloning, expression and identification of a new trehalose synthase gene from Thermobifida fusca genome. Acta Biochim. Biophys. Sin. 36: 477-484. https://doi.org/10.1093/abbs/36.7.477
  33. Liang J, R Huang, Y Huang, X Wang, L Du, Y Wei. 2013. Cloning, expression, properties, and functional amino acid residues of new trehalose synthase from Thermomonospora curvata DSM 43183. J. Mol. Catal. B Enzym. 90: 26-32. https://doi.org/10.1016/j.molcatb.2013.01.014
  34. Kim T-K, J-H Jang, H-Y Cho, H-S Lee, Y-W Kim. 2010. Gene cloning and characterization of a trehalose synthase from Corynebacterium glutamicum ATCC13032. Food Sci. Biotechnol. 19: 565-569. https://doi.org/10.1007/s10068-010-0079-x
  35. Lee J-H, K-H. Lee, C-G Kim, S-Y Lee, G-J Kim, Y-H. Park, et al. 2005. Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl. Microbiol. Biotechnol. 68: 213-219. https://doi.org/10.1007/s00253-004-1862-5
  36. Yan J, Y Qiao, J Hu, H Ding. 2013. Cloning, expression and characterization of a trehalose synthase gene from Rhodococcus opacus. Protein J. 32: 223-229. https://doi.org/10.1007/s10930-013-9476-3
  37. Jiang L, M Lin, Y Zhang, Y Li, X Xu, S Li, et al. 2013. Identification and characterization of a novel trehalose synthase gene derived from saline-alkali soil metagenomes. PLoS One 8: e77437. https://doi.org/10.1371/journal.pone.0077437
  38. Chang SW, WH Chang, MR Lee, TJ Yang, NY Yu, CS Chen, et al. 2010. Simultaneous production of trehalose, bioethanol, and highprotein product from rice by an enzymatic process. J. Agric. Food Chem. 58: 2908-2914. https://doi.org/10.1021/jf903382e
  39. Chang SW, PT Liu, LC Hsu, CS Chen, JF Shaw. 2012. Integrated biocatalytic process for trehalose production and separation from rice hydrolysate using a bioreactor system. Food Chem. 134: 1745-1753. https://doi.org/10.1016/j.foodchem.2012.03.065
  40. Li N, H Wang, L Li, H Cheng, D Liu, H Cheng, Z Deng. 2016. Integrated approach to producing high-purity trehalose from maltose by the yeast Yarrowia lipolytica displaying Trehalose Synthase (TreS) on the cell surface. J. Agric. Food Chem. 64: 6179-6187. https://doi.org/10.1021/acs.jafc.6b02175