DOI QR코드

DOI QR Code

Glucose Transport through N-Acetylgalactosamine Phosphotransferase System in Escherichia coli C Strain

  • Kim, Hyun Ju (Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University) ;
  • Jeong, Haeyoung (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Sang Jun (Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University)
  • Received : 2022.05.31
  • Accepted : 2022.06.30
  • Published : 2022.08.28

Abstract

When ptsG, a glucose-specific phosphotransferase system (PTS) component, is deleted in Escherichia coli, growth can be severely poor because of the lack of efficient glucose transport. We discovered a new PTS transport system that could transport glucose through the growth-coupled experimental evolution of ptsG-deficient E. coli C strain under anaerobic conditions. Genome sequencing revealed mutations in agaR, which encodes a repressor of N-acetylgalactosamine (Aga) PTS expression in evolved progeny strains. RT-qPCR analysis showed that the expression of Aga PTS gene increased because of the loss-of-function of agaR. We confirmed the efficient Aga PTS-mediated glucose uptake by genetic complementation and anaerobic fermentation. We discussed the discovery of new glucose transporter in terms of different genetic backgrounds of E. coli strains, and the relationship between the pattern of mixed-acids fermentation and glucose transport rate.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2017R1E1A1A01075124, 2018R1A6A3A11051083, and 2021R1A2C1013606).

References

  1. Guan L, Kaback HR. 2013. Glucose/Sugar Transport in Bacteria, pp. 387-390. In Lennarz WJ, Lane MD (eds.), Encyclopedia of Biological Chemistry, Second Ed. Elsevier, Oxford
  2. Crigler J, Bannerman-Akwei L, Cole AE, Eiteman MA, Altman E. 2018. Glucose can be transported and utilized in Escherichia coli by an altered or overproduced N-acetylglucosamine phosphotransferase system (PTS). Microbiology 164: 163-172. https://doi.org/10.1099/mic.0.000596
  3. Alva A, Sabido-Ramos A, Escalante A, Bolivar F. 2020. New insights into transport capability of sugars and its impact on growth from novel mutants of Escherichia coli. Appl. Microbiol. Biotechnol. 104: 1463-1479. https://doi.org/10.1007/s00253-019-10335-x
  4. Jahreis K, Pimentel-Schmitt EF, Bruckner R, Titgemeyer F. 2008. Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol. Rev. 32: 891-907. https://doi.org/10.1111/j.1574-6976.2008.00125.x
  5. Deutscher J, Francke C, Postma PW. 2006. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70: 939-1031. https://doi.org/10.1128/MMBR.00024-06
  6. Gutknecht R, Flukiger K, Lanz R, Erni B. 1999. Mechanism of phosphoryl transfer in the dimeric IIABMan subunit of the Escherichia coli mannose transporter. J. Biol. Chem. 274: 6091-6096. https://doi.org/10.1074/jbc.274.10.6091
  7. Fuentes LG, Lara AR, Martinez LM, Ramirez OT, Martinez A, Bolivar F, et al. 2013. Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production. Microb. Cell Fact. 12: 42. https://doi.org/10.1186/1475-2859-12-42
  8. Death A, Ferenci T. 1993. The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations. Res. Microbiol. 144: 529-537. https://doi.org/10.1016/0923-2508(93)90002-J
  9. Hernandez-Montalvo V, Martinez A, Hernandez-Chavez G, Bolivar F, Valle F, Gosset G. 2003. Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol. Bioeng. 83: 687-694. https://doi.org/10.1002/bit.10702
  10. Lu J, Tang J, Liu Y, Zhu X, Zhang T, Zhang X. 2012. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl. Microbiol. Biotechnol. 93: 2455-2462. https://doi.org/10.1007/s00253-011-3752-y
  11. Kyselova L, Kreitmayer D, Kremling A, Bettenbrock K. 2018. Type and capacity of glucose transport influences succinate yield in two-stage cultivations. Microb. Cell Fact. 17: 132. https://doi.org/10.1186/s12934-018-0980-1
  12. Zhang X, Jantama K, Moore JC, Jarboe LR, Shanmugam KT, Ingram LO. 2009. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc. Natl. Acad. Sci. USA 106: 20180-20185. https://doi.org/10.1073/pnas.0905396106
  13. Kim HJ, Jeong H, Lee SJ. 2020. Short-term adaptation modulates anaerobic metabolic flux to succinate by activating ExuT, a novel Dglucose transporter in Escherichia coli. Front. Microbiol. 11: 27. https://doi.org/10.3389/fmicb.2020.00027
  14. Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI. 2001. Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl. Environ. Microbiol. 67: 148-154. https://doi.org/10.1128/AEM.67.1.148-154.2001
  15. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2: 2006.0008. https://doi.org/10.1038/msb4100050
  16. Kim HJ, Hou BK, Lee SG, Kim JS, Lee DW, Lee SJ. 2013. Genome-wide analysis of redox reactions reveals metabolic engineering targets for D-lactate overproduction in Escherichia coli. Metab. Eng. 18: 44-52. https://doi.org/10.1016/j.ymben.2013.03.004
  17. Reizer J, Ramseier TM, Reizer A, Charbit A, Saier MH. 1996. Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology 142 (Pt 2): 231-250. https://doi.org/10.1099/13500872-142-2-231
  18. Hu Z, Patel IR, Mukherjee A. 2013. Genetic analysis of the roles of agaA, agaI, and agaS genes in the N-acetyl-D-galactosamine and D-galactosamine catabolic pathways in Escherichia coli strains O157:H7 and C. BMC Microbiol. 13: 94. https://doi.org/10.1186/1471-2180-13-94
  19. Begley GS, Hansen DE, Jacobson GR, Knowles JR. 1982. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:glucose phosphotransferase system. Biochemistry 21: 5552-5556. https://doi.org/10.1021/bi00265a026
  20. Curtis SJ, Epstein W. 1975. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J. Bacteriol. 122: 1189-1199. https://doi.org/10.1128/jb.122.3.1189-1199.1975
  21. Liang Q, Zhang F, Li Y, Zhang X, Li J, Yang P, et al. 2015. Comparison of individual component deletions in a glucose-specific phosphotransferase system revealed their different applications. Sci. Rep. 5: 13200. https://doi.org/10.1038/srep13200
  22. Death A, Ferenci T. 1994. Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. J. Bacteriol. 176: 5101-5107. https://doi.org/10.1128/jb.176.16.5101-5107.1994
  23. Flores N, Flores S, Escalante A, de Anda R, Leal L, Malpica R, et al. 2005. Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Metab. Eng. 7: 70-87. https://doi.org/10.1016/j.ymben.2004.10.002
  24. Brinkkotter A, Kloss H, Alpert C, Lengeler JW. 2000. Pathways for the utilization of N-acetyl-galactosamine and galactosamine in Escherichia coli. Mol. Microbiol. 37: 125-135. https://doi.org/10.1046/j.1365-2958.2000.01969.x
  25. Ray WK, Larson TJ. 2004. Application of AgaR repressor and dominant repressor variants for verification of a gene cluster involved in N-acetylgalactosamine metabolism in Escherichia coli K-12. Mol. Microbiol. 51: 813-826.
  26. Cherepanov PP, Wackernagel W. 1995. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 9-14. https://doi.org/10.1016/0378-1119(95)00193-A
  27. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645. https://doi.org/10.1073/pnas.120163297