참고문헌
- Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS. 2003. Microbial conversion of steroid compounds: recent developments. Enzyme Microb. Technol. 32: 688-705. https://doi.org/10.1016/S0141-0229(03)00029-2
- Sultana N. 2018. Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation. Steroids 136: 76-92. https://doi.org/10.1016/j.steroids.2018.01.007
- Chen Y, Tang Y-M, Yu S-L, Han Y-W, Kou J-P, Liu B-L, et al. 2015. Advances in the pharmacological activities and mechanisms of diosgenin. Chinese J. Nat. Med. 13: 578-587. https://doi.org/10.1016/S1875-5364(15)30053-4
- Bhatti HN, Khera RA. 2012. Biological transformations of steroidal compounds: a review. Steroids 77: 1267-1290. https://doi.org/10.1016/j.steroids.2012.07.018
- Giorgi V, Menendez P, Garcia-Carnelli C. 2019. Microbial transformation of cholesterol: reactions and practical aspects-an update. World J. Microbiol. Biotechnol. 35: 131. https://doi.org/10.1007/s11274-019-2708-8
- Parshikov IA, Sutherland JB. 2015. Biotransformation of steroids and flavonoids by cultures of Aspergillus niger. Appl. Biochem. Biotechnol. 176: 903-923. https://doi.org/10.1007/s12010-015-1619-x
- Thomas ST, VanderVen BC, Sherman DR, Russell DG, Sampson NS. 2011. Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. J. Biol. Chem. 286: 43668-43678. https://doi.org/10.1074/jbc.M111.313643
- Wang ZF, Huang YL, Rathman JF, Yang S-T. 2002. Lecithin-enhanced biotransformation of cholesterol to androsta-1,4-diene-3,17-dione and androsta-4-ene-3,17-dione. J. Chem. Technol. Biotechnol. 77: 1349-1357. https://doi.org/10.1002/jctb.728
- McLean KJ, Hans M, Munro AW. 2012. Cholesterol, an essential molecule: diverse roles involving cytochrome P450 enzymes. Biochem. Soc. Trans. 40: 587-593. https://doi.org/10.1042/BST20120077
- Hu Z, He B, Ma L, Sun Y, Niu Y, Zeng B. 2017. Recent advances in ergosterol biosynthesis and regulation mechanisms in S. cerevisiae. Indian J. Microbiol. 57: 270-277. https://doi.org/10.1007/s12088-017-0657-1
- Nagegowda DA, Gupta P. 2020. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Sci. 294: 110457. https://doi.org/10.1016/j.plantsci.2020.110457
- Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, et al. 2003. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat. Biotechnol. 21: 143-149. https://doi.org/10.1038/nbt775
- Li X, Wang Z, Zhang G, Yi L. 2019. Improving lycopene production in S. cerevisiae through optimizing pathway and chassis metabolism. Chem. Eng. Sci. 193: 364-369. https://doi.org/10.1016/j.ces.2018.09.030
- Hohmann HP, Lehmann M. 2012. Production of non-yeast sterols by yeast. US Patent. 20120231495.
- Lang C, Markus V.2011. Preparation of 7-dehydrocholesterol and/or the biosynthetic intermediates and/or secondary products thereof in transgenic organisms. US Patent. 12607017.
- Guo XJ, Xiao WH, Wang Y, Yao MD, Zeng BX, Liu H, et al. 2018. Metabolic engineering of S. cerevisiae for 7-dehydrocholesterol overproduction. Biotechnol. Biofuels 11: 192. https://doi.org/10.1186/s13068-018-1194-9
- Souza CM, Schwabe TM, Pichler H, Ploier B, Leitner E, Guan XL, et al. 2011. A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metab. Eng. 13: 555-569. https://doi.org/10.1016/j.ymben.2011.06.006
- Cheng C, Zhang M, Xue C, Bai F, Zhao X. 2017. Development of stress tolerant S. cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation. J. Biosci. Bioeng. 123: 141-146. https://doi.org/10.1016/j.jbiosc.2016.07.021
- Li S, Liu L, Chen J. 2015. Mitochondrial fusion and fission are involved in stress tolerance of Candida glabrata. Bioresour. Bioprocess. 2: 12. https://doi.org/10.1186/s40643-015-0041-0