과제정보
This research was supported by the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGS1042221) and the Bio & Medical Technology Development Program (2019M3A9F3065867 to C-HL) of the National Research Foundation (NRF) funded by the Ministry of Science and ICT of Korea.
참고문헌
- Kalia LV, Lang AE. 2015. Parkinson's disease. Lancet 386: 896-912. https://doi.org/10.1016/S0140-6736(14)61393-3
- Hughes AJ, Daniel SE, Kilford L, Lees AJ. 1992. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55: 181-184. https://doi.org/10.1136/jnnp.55.3.181
- Rana AQ, Ahmed US, Chaudry ZM, Vasan S. 2015. Parkinson's disease: a review of non-motor symptoms. Expert Rev. Neurother. 15: 549-562. https://doi.org/10.1586/14737175.2015.1038244
- Schapira AHV, Chaudhuri KR, Jenner P. 2017. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18: 435-450. https://doi.org/10.1038/nrn.2017.62
- Fasano A, Visanji NP, Liu LW, Lang AE, Pfeiffer RF. 2015. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 14: 625-639. https://doi.org/10.1016/S1474-4422(15)00007-1
- Santos SF, de Oliveira HL, Yamada ES, Neves BC, Pereira A, Jr. 2019. The gut and Parkinson's disease-A bidirectional pathway. Front. Neurol. 10: 574. https://doi.org/10.3389/fneur.2019.00574
- Cersosimo MG, Raina GB, Pecci C, Pellene A, Calandra CR, Gutierrez C, et al. 2013. Gastrointestinal manifestations in Parkinson's disease: prevalence and occurrence before motor symptoms. J. Neurol. 260: 1332-1338. https://doi.org/10.1007/s00415-012-6801-2
- Martinez-Martin P, Rodriguez-Blazquez C, Kurtis MM, Chaudhuri KR, Group NV. 2011. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson's disease. Mov. Disord. 26: 399-406. https://doi.org/10.1002/mds.23462
- Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. 2019. The microbiota-gut-brain Axis. Physiol. Rev. 99: 1877-2013. https://doi.org/10.1152/physrev.00018.2018
- Braak H, Rub U, Gai WP, Del Tredici K. 2003. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural. Transm (Vienna) 110: 517-536. https://doi.org/10.1007/s00702-002-0808-2
- Neufeld KM, Kang N, Bienenstock J, Foster JA. 2011. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23: 255-264, e119. https://doi.org/10.1111/j.1365-2982.2010.01620.x
- Kawase T, Nagasawa M, Ikeda H, Yasuo S, Koga Y, Furuse M. 2017. Gut microbiota of mice putatively modifies amino acid metabolism in the host brain. Br. J. Nutr. 117: 775-783. https://doi.org/10.1017/S0007114517000678
- Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard Et, Taylor CM, Welsh DA, et al. 2015. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 77: 607-615. https://doi.org/10.1016/j.biopsych.2014.07.012
- Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. 2016. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol. Psychiatry 21: 786-796. https://doi.org/10.1038/mp.2016.44
- Ansari F, Pourjafar H, Tabrizi A, Homayouni A. 2020. The effects of probiotics and prebiotics on mental disorders: A review on depression, anxiety, alzheimer, and autism spectrum disorders. Curr. Pharm. Biotechnol. 21: 555-565. https://doi.org/10.2174/1389201021666200107113812
- Huang H, Xu H, Luo Q, He J, Li M, Chen H, et al. 2019. Fecal microbiota transplantation to treat Parkinson's disease with constipation: A case report. Medicine (Baltimore) 98: e16163. https://doi.org/10.1097/md.0000000000016163
- Hsieh TH, Kuo CW, Hsieh KH, Shieh MJ, Peng CW, Chen YC, et al. 2020. Probiotics alleviate the progressive deterioration of motor functions in a mouse model of Parkinson's disease. Brain Sci. 10: 206. https://doi.org/10.3390/brainsci10040206
- Srivastav S, Neupane S, Bhurtel S, Katila N, Maharjan S, Choi H, et al. 2019. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J. Nutr. Biochem. 69: 73-86. https://doi.org/10.1016/j.jnutbio.2019.03.021
- Castelli V, d'Angelo M, Lombardi F, Alfonsetti M, Antonosante A, Catanesi M, et al. 2020. Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson's disease models. Aging (Albany NY) 12: 4641-4659. https://doi.org/10.18632/aging.102927
- Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al. 2015. Colonic bacterial composition in Parkinson's disease. Mov. Disord. 30: 1351-1360. https://doi.org/10.1002/mds.26307
- Rani L, Mondal AC. 2021. Unravelling the role of gut microbiota in Parkinson's disease progression: Pathogenic and therapeutic implications. Neurosci. Res. 168: 100-112. https://doi.org/10.1016/j.neures.2021.01.001
- Ahn S, Jin TE, Chang DH, Rhee MS, Kim HJ, Lee SJ, et al. 2016. Agathobaculum butyriciproducens gen. nov. sp. nov., a strict anaerobic, butyrate-producing gut bacterium isolated from human faeces and reclassification of Eubacterium desmolans as Agathobaculum desmolans comb. nov. Int. J. Syst. Evol. Microbiol. 66: 3656-3661. https://doi.org/10.1099/ijsem.0.001195
- Go J, Chang DH, Ryu YK, Park HY, Lee IB, Noh JR, et al. 2021. Human gut microbiota Agathobaculum butyriciproducens improves cognitive impairment in LPS-induced and APP/PS1 mouse models of Alzheimer's disease. Nutr Res. 86: 96-108. https://doi.org/10.1016/j.nutres.2020.12.010
- Yan J, Fu Q, Cheng L, Zhai M, Wu W, Huang L, et al. 2014. Inflammatory response in Parkinson's disease (Review). Mol. Med. Rep. 10: 2223-2233. https://doi.org/10.3892/mmr.2014.2563
- Troncoso-Escudero P, Parra A, Nassif M, Vidal RL. 2018. Outside in: Unraveling the role of neuroinflammation in the progression of Parkinson's disease. Front. Neurol. 9: 860. https://doi.org/10.3389/fneur.2018.00860
- Hirsch EC, Hunot S. 2009. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol. 8: 382-397. https://doi.org/10.1016/S1474-4422(09)70062-6
- Gagne JJ, Power MC. 2010. Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 74: 995-1002. https://doi.org/10.1212/WNL.0b013e3181d5a4a3
- Whitton PS. 2010. Neuroinflammation and the prospects for anti-inflammatory treatment of Parkinson's disease. Curr. Opin. Investig. Drugs. 11: 788-794.
- Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110: 9066-9071. https://doi.org/10.1073/pnas.1219451110
- Park HY, Ryu YK, Kim YH, Park TS, Go J, Hwang JH, et al. 2016. Gadd45beta ameliorates L-DOPA-induced dyskinesia in a Parkinson's disease mouse model. Neurobiol. Dis. 89: 169-179. https://doi.org/10.1016/j.nbd.2016.02.013
- Park HY, Kang YM, Kang Y, Park TS, Ryu YK, Hwang JH, et al. 2014. Inhibition of adenylyl cyclase type 5 prevents L-DOPA-induced dyskinesia in an animal model of Parkinson's disease. J. Neurosci. 34: 11744-11753. https://doi.org/10.1523/JNEUROSCI.0864-14.2014
- Ryu YK, Park HY, Go J, Choi DH, Kim YH, Hwang JH, et al. 2018. Metformin inhibits the development of L-DOPA-induced dyskinesia in a murine model of Parkinson's disease. Mol. Neurobiol. 55: 5715-5726. https://doi.org/10.1007/s12035-017-0752-7
- Keith BJ Fraklin GP. 2007. The mouse brain in stereotaxic coordinates, Third edition Ed. Elsevier, New York, USA.
- Ryu YK, Go J, Park HY, Choi YK, Seo YJ, Choi JH, et al. 2020. Metformin regulates astrocyte reactivity in Parkinson's disease and normal aging. Neuropharmacology 175: 108173. https://doi.org/10.1016/j.neuropharm.2020.108173
- Go J, Park TS, Han GH, Park HY, Ryu YK, Kim YH, et al. 2018. Piperlongumine decreases cognitive impairment and improves hippocampal function in aged mice. Int. J. Mol. Med. 42: 1875-1884. https://doi.org/10.3892/ijmm.2018.3782
- Park TS, Ryu YK, Park HY, Kim JY, Go J, Noh JR, et al. 2017. Humulus japonicus inhibits the progression of Alzheimer's disease in a APP/PS1 transgenic mouse model. Int. J. Mol. Med. 39: 21-30. https://doi.org/10.3892/ijmm.2016.2804
- Albin RL, Young AB, Penney JB. 1989. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12: 366-375. https://doi.org/10.1016/0166-2236(89)90074-X
- Ryu YK, Kang Y, Go J, Park HY, Noh JR, Kim YH, et al. 2017. Humulus japonicus prevents dopaminergic neuron death in 6-hydroxydopamine-induced models of Parkinson's disease. J. Med. Food 20: 116-123. https://doi.org/10.1089/jmf.2016.3851
- Haavik J, Toska K. 1998. Tyrosine hydroxylase and Parkinson's disease. Mol. Neurobiol. 16: 285-309. https://doi.org/10.1007/BF02741387
- Franke TF, Kaplan DR, Cantley LC. 1997. PI3K: downstream AKTion blocks apoptosis. Cell 88: 435-437. https://doi.org/10.1016/S0092-8674(00)81883-8
- Glinka Y, Gassen M, Youdim MB. 1997. Mechanism of 6-hydroxydopamine neurotoxicity. J. Neural. Transm. Suppl. 50: 55-66. https://doi.org/10.1007/978-3-7091-6842-4_7
- Thiruvengadam M, Venkidasamy B, Subramanian U, Samynathan R, Ali Shariati M, Rebezov M, et al. 2021. Bioactive compounds in oxidative stress-mediated diseases: Targeting the NRF2/ARE signaling pathway and epigenetic regulation. Antioxidants (Basel). 10: 1859. https://doi.org/10.3390/antiox10121859
- Kramer BC, Mytilineou C. 2004. Alterations in the cellular distribution of bcl-2, bcl-x and bax in the adult rat substantia nigra following striatal 6-hydroxydopamine lesions. J. Neurocytol. 33: 213-223. https://doi.org/10.1023/B:NEUR.0000030696.62829.ec
- Fulling C, Dinan TG, Cryan JF. 2019. Gut microbe to brain signaling: What happens in vagus. Neuron 101: 998-1002. https://doi.org/10.1016/j.neuron.2019.02.008
- Hayashi A, Sato T, Kamada N, Mikami Y, Matsuoka K, Hisamatsu T, et al. 2013. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe. 13: 711-722. https://doi.org/10.1016/j.chom.2013.05.013
- Xu R, Zhang Y, Chen S, Zeng Y, Fu X, Chen T, et al. 2022. The role of the probiotic Akkermansia muciniphila in brain functions: insights underpinning therapeutic potential. Crit. Rev. Microbiol. 11: 1-26.
- Deumens R, Blokland A, Prickaerts J. 2002. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 175: 303-317. https://doi.org/10.1006/exnr.2002.7891
- Zhu Y, Zhang J, Zeng Y. 2012. Overview of tyrosine hydroxylase in Parkinson's disease. CNS Neurol. Disord. Drug Targets 11: 350-358. https://doi.org/10.2174/187152712800792901
- Yang L, Wang H, Liu L, Xie A. 2018. The role of insulin/IGF-1/PI3K/Akt/GSK3beta signaling in Parkinson's disease dementia. Front. Neurosci. 12: 73. https://doi.org/10.3389/fnins.2018.00073
- Chen G, Bower KA, Ma C, Fang S, Thiele CJ, Luo J. 2004. Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J. 18: 1162-1164. https://doi.org/10.1096/fj.04-1551fje
- Chung CY, Koprich JB, Endo S, Isacson O. 2007. An endogenous serine/threonine protein phosphatase inhibitor, G-substrate, reduces vulnerability in models of Parkinson's disease. J. Neurosci. 27: 8314-8323. https://doi.org/10.1523/JNEUROSCI.1972-07.2007
- Doble BW, Woodgett JR. 2003. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116: 1175-1186. https://doi.org/10.1242/jcs.00384
- Jope RS, Johnson GV. 2004. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29: 95-102. https://doi.org/10.1016/j.tibs.2003.12.004
- Beaulieu JM, Del'guidice T, Sotnikova TD, Lemasson M, Gainetdinov RR. 2011. Beyond cAMP: The regulation of Akt and GSK3 by dopamine receptors. Front. Mol. Neurosci. 4: 38. https://doi.org/10.3389/fnmol.2011.00038
- Quesada A, Lee BY, Micevych PE. 2008. PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DA neuronal neuroprotection against a unilateral rat model of Parkinson's disease. Dev. Neurobiol. 68: 632-644. https://doi.org/10.1002/dneu.20609
- Aleyasin H, Rousseaux MW, Marcogliese PC, Hewitt SJ, Irrcher I, Joselin AP, et al. 2010. DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proc. Natl. Acad. Sci. USA 107: 3186-3191. https://doi.org/10.1073/pnas.0914876107
- Xie CL, Lin JY, Wang MH, Zhang Y, Zhang SF, Wang XJ, et al. 2016. Inhibition of Glycogen Synthase Kinase-3beta (GSK-3beta) as potent therapeutic strategy to ameliorates L-dopa-induced dyskinesia in 6-OHDA parkinsonian rats. Sci. Rep. 6: 23527. https://doi.org/10.1038/srep23527
- Krishnankutty A, Kimura T, Saito T, Aoyagi K, Asada A, Takahashi SI, et al. 2017. In vivo regulation of glycogen synthase kinase 3beta activity in neurons and brains. Sci. Rep. 7: 8602. https://doi.org/10.1038/s41598-017-09239-5
- Aaseth J, Dusek P, Roos PM. 2018. Prevention of progression in Parkinson's disease. Biometals 31: 737-747. https://doi.org/10.1007/s10534-018-0131-5
- Percario S, da Silva Barbosa A, Varela ELP, Gomes ARQ, Ferreira MES, de Nazare Araujo Moreira T, et al. 2020. Oxidative stress in Parkinson's disease: Potential benefits of antioxidant supplementation. Oxid. Med. Cell Longev. 2020: 2360872.
- de Oliveira MR, Ferreira GC, Schuck PF. 2016. Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: Role for PI3K/Akt/Nrf2 pathway. Toxicol. In Vitro 32: 41-54. https://doi.org/10.1016/j.tiv.2015.12.005
- Li L, Dong H, Song E, Xu X, Liu L, Song Y. 2014. Nrf2/ARE pathway activation, HO-1 and NQO1 induction by polychlorinated biphenyl quinone is associated with reactive oxygen species and PI3K/AKT signaling. Chem. Biol. Interact. 209: 56-67. https://doi.org/10.1016/j.cbi.2013.12.005
- Reiter RJ. 1998. Oxidative damage in the central nervous system: protection by melatonin. Prog. Neurobiol. 56: 359-384. https://doi.org/10.1016/S0301-0082(98)00052-5
- Miao L, St Clair DK. 2009. Regulation of superoxide dismutase genes: implications in disease. Free Radic. Biol. Med. 47: 344-356. https://doi.org/10.1016/j.freeradbiomed.2009.05.018
- Oh YJ, Wong SC, Moffat M, O'Malley KL. 1995. Overexpression of Bcl-2 attenuates MPP+, but not 6-ODHA, induced cell death in a dopaminergic neuronal cell line. Neurobiol. Dis. 2: 157-167. https://doi.org/10.1006/nbdi.1995.0017
- Sun J, Xu J, Ling Y, Wang F, Gong T, Yang C, et al. 2019. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice. Transl. Psychiatry 9: 189. https://doi.org/10.1038/s41398-019-0525-3
- Zhao Z, Ning J, Bao XQ, Shang M, Ma J, Li G, et al. 2021. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome 9: 226. https://doi.org/10.1186/s40168-021-01107-9
- Liddelow SA, Barres BA. 2017. Reactive astrocytes: Production, function, and therapeutic potential. Immunity 46: 957-967. https://doi.org/10.1016/j.immuni.2017.06.006
- Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131: 1164-1178. https://doi.org/10.1016/j.cell.2007.10.036
- Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541: 481-487. https://doi.org/10.1038/nature21029
- Gorshkov K, Aguisanda F, Thorne N, Zheng W. 2018. Astrocytes as targets for drug discovery. Drug Discov. Today 23: 673-680. https://doi.org/10.1016/j.drudis.2018.01.011
- Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. 2012. Host-gut microbiota metabolic interactions. Science 336: 1262-1267. https://doi.org/10.1126/science.1223813
- Holscher HD. 2017. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8: 172-184. https://doi.org/10.1080/19490976.2017.1290756
- Cantu-Jungles TM, Rasmussen HE, Hamaker BR. 2019. Potential of prebiotic butyrogenic fibers in Parkinson's disease. Front. Neurol. 10: 663. https://doi.org/10.3389/fneur.2019.00663
- Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. 2011. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA 108 Suppl 1: 4586-4591. https://doi.org/10.1073/pnas.1000097107
- Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Burmann J, et al. 2016. Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat. Disord. 32: 66-72. https://doi.org/10.1016/j.parkreldis.2016.08.019
- Liu J, Wang F, Liu S, Du J, Hu X, Xiong J, et al. 2017. Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide-1. J. Neurol. Sci. 381: 176-181.