DOI QR코드

DOI QR Code

Inhibition of Pathogenic Bacteria and Fungi by Natural Phenoxazinone from Octopus Ommochrome Pigments

  • Received : 2022.06.23
  • Accepted : 2022.07.18
  • Published : 2022.08.28

Abstract

Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.

Keywords

Acknowledgement

This research was funded by project No. 2174 (Agreement: I0000 / 230/2018) and the doctoral grant from the National Council of Science and Technology (CONACYT), Mexico. The author thanks Dr. Erika Silva Campa of (DIFUS-University of Sonora) for her technical assistance in the confocal scanning laser microscopy analysis.

References

  1. Jereb P, Roper CFE, Norman MD. Julian K Finn. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. pp. 370. Octopods and Vampire Squids. FAO Species Catalogue for Fishery Purposes. No. 4, Vol. 3. Rome, FAO. 2014.
  2. Ezquerra-Brauer JM, Aubourg SP. 2019. Recent trends for the employment of jumbo squid (Dosidicus gigas) by-products as a source of bioactive compounds with nutritional, functional and preservative applications: a review. Int. J. Food Sci. Technol. 54: 987-998. https://doi.org/10.1111/ijfs.14067
  3. SAGARPA. CONAPESCA. Anuario Estadistico de Acuacultura y Pesca, 2017.
  4. Dominguez-Contreras JF, Munguia-Vega A, Ceballos-Vazquez BP, Arellano-Martinez M, Garcia-Rodriguez FJ, Culver M, 2018. Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico Peer J. 6: e4295. https://doi.org/10.7717/peerj.4295
  5. Figon F and Casas J. 2018. Ommochromes in invertebrates: biochemistry and cell biology. Biol. Rev. Camb Philos Soc. doi: 10.1111/ brv.12441. Online ahead of print.
  6. Chatterjee A, Norton-Baker B, Bagge LE, Patel P, Gorodetsky AA. 2018. An introduction to color-changing systems from the cephalopod protein reflectin. Bioinspir. Biomim. 13: 045001. https://doi.org/10.1088/1748-3190/aab804
  7. Williams TL, Stephen L Senft, JingjieYeo, Francisco J, Martin-Martinez, Alan M Kuzirian, et al. 2019. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 10: 1004. https://doi.org/10.1038/s41467-019-08891-x
  8. Williams TL, DiBona CW, Dinneen SR, Jones Labadie SF, Chu F, Deravi LF. 2016. Contributions of phenoxazone-based pigments to the structure and function of nanostructured granules in squid chromatophores. Langmuir 32: 3754-3759. https://doi.org/10.1021/acs.langmuir.6b00243
  9. Kumar A, Williams TL, Martin CA, Figueroa-Navedo AM, Deravi LF. 2018. Xanthommatin-based electrochromic displays inspired by nature. ACS Appl. Mater. Interfaces 10: 43177-43183. https://doi.org/10.1021/acsami.8b14123
  10. Ushakova N, Dontsov A, Natalia Sakina N, Alexander Bastrakov A, Ostrovsky M. 2019. Antioxidative properties of melanins and ommochromes from black soldier fly Hermetia illucens. Biomolecules 9: 408. https://doi.org/10.3390/biom9090408
  11. Dontsov AE, Ushakova NA, Sadykovac VS, Bastrakov AI. 2020. Ommochromes from Hermetia illucens: isolation and study of antioxidant characteristics and antimicrobial activity. Appl. Biochem. Microbiol. 56: 91-95. https://doi.org/10.1134/S0003683820010044
  12. Aubourg SP, Torres-Arreola W, Trigo M, Ezquerra-Brauer JM. 2016. Partial characterization of jumbo squid skin pigment extract and its antioxidant potential in a marine oil system. Eur. J. Lipid Sci. Technol. 118: 1293-1304. https://doi.org/10.1002/ejlt.201500356
  13. Ezquerra-Brauer JM, Miranda JM, Cepeda A, Barros-Velazquez J, Aubourg SP. 2016. Effect of jumbo squid (Dosidicus gigas) skin extract on the microbial activity in chilled mackerel (Scomber scombrus). LWT Food Sci. Technol. 72: 134e140.
  14. Chan-Higuera JE, Carbonell-Barrachina AC, Cardenas-Lopez JL, Kacaniova M, Burgos-Hernandez A, Ezquerra-Brauer JM. 2019. Jumbo squid (Dosidicus gigas) skin pigments: chemical analysis and evaluation of antimicrobial and antimutagenic potential. J. Microbiol. Biotechnol. Food Sci. 9: 349-353. https://doi.org/10.15414/jmbfs.2019.9.2.349-353
  15. Le Roes-Hill M. Goodwin C, Burton S. 2009. Phenoxazinone synthase: what's in a name?. Trends Biotechnol. 27: 248-258. https://doi.org/10.1016/j.tibtech.2009.01.001
  16. Shimizu S, Suzuki M, Tomoda A, Arai S, Taguchi H, Hanawa T, et al. 2004. Phenoxazine compounds produced by the reactions with bovine hemoglobin show antimicrobial activity against non-tuberculosis mycobacteria. Tohoku J. Exp. Med. 203: 47-52. https://doi.org/10.1620/tjem.203.47
  17. Bolognese A, Correale G, Manfra M, Lavecchia A, Mazzoni O, Ettore Novellino, et al. 2002. Antitumor agents. 1. synthesis, biological evaluation, and molecular modeling of 5H-Pyrido[3,2-a] phenoxazin-5-one, a compound with potent antiproliferative activity. J. Med. Chem. 45: 5205-5216. https://doi.org/10.1021/jm020913z
  18. Ostrovsky MA, Zak PP, Dontsov AE. 2018. Vertebrate eye melanosomes and invertebrate eye ommochromes as screening cell organelles. Biol. Bull. 45: 570-579. https://doi.org/10.1134/S1062359018060109
  19. Linzen B. 1974. The Tryptophan → Ommochrome pathway in insects. Adv. Insect Physiol. 10: 117-246. https://doi.org/10.1016/S0065-2806(08)60130-7
  20. Riou M and Christides JP. 2010. Cryptic color change in a crab spider (Misumena vatia): identification and quantification of precursors and ommochrome pigments by HPLC. J. Chem. Ecol. 36: 412-423. https://doi.org/10.1007/s10886-010-9765-7
  21. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed.CLSI supplement M100. Wayne: Clinical and Laboratory Standards Institute; 2019.
  22. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  23. O'Brien J, Wilson I, Orton T, Pognan F. 2000. Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 267: 5421-5426. https://doi.org/10.1046/j.1432-1327.2000.01606.x
  24. Hase S, Wakamatsu K, Fujimoto K, Inaba A, Kobayashi K, Matsumoto M. 2006. Characterization of the pigment produced by the planarian, Dugesia ryukyuensis. Pigment Cell Res. 19: 248-249. https://doi.org/10.1111/j.1600-0749.2006.00306.x
  25. Messenger JB. 2001. Cephalopod chromatophores: neurobiology and natural history. Biol. Rev. 76: 473-528. https://doi.org/10.1017/S1464793101005772
  26. Li H, Zhou X, Huang Y, Liao B, Cheng L, Ren B. 2021. Reactive oxygen species in pathogen clearance: the killing mechanisms, the adaptation response, and the side effects. Front. Microbiol. 11: 622534. https://doi.org/10.3389/fmicb.2020.622534
  27. Llandres AL, Figon F, Christides JP, Mandon N, Casas J, 2013. Environmental and hormonal factors controlling reversible color change in crab spiders. J. Exp. Biol. 216: 3886-3895. https://doi.org/10.1242/jeb.086470
  28. Farmer LA, Haidasz EA, Griesser M, Pratt DA. 2017. Phenoxazine: a privileged scaffold for radical-trapping antioxidants. J. Org. Chem. 82: 10523-10536. https://doi.org/10.1021/acs.joc.7b02025
  29. Romero Y and Martinez A. 2015. Antiradical capacity of ommochromes. J. Mol. Model 21: 220. https://doi.org/10.1007/s00894-015-2773-3
  30. Shah R, Margison K, Pratt DA. 2017. The potency of diarylamine radical-trapping antioxidants as inhibitors of ferroptosis underscores the role of autoxidation in the mechanism of cell death. ACS Chem. Biol. 12: 2538-2545. https://doi.org/10.1021/acschembio.7b00730
  31. Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P, et al. 2017. Antibiotic resistance: what is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg. Infect. Control 12: Doc05
  32. Breijyeh Z. Jubeh B, Karaman R. 2020. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 25: 1340. https://doi.org/10.3390/molecules25061340
  33. White TC. 2007. Mechanisms of resistance to antifungal agents. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA. (Eds.). pp. 1961-1971. Manual of Clinical Microbiology, 9th Ed. ASM Press, Washington, DC.
  34. Espinel-Ingroff A. 2008. Mechanisms of resistance to antifungal agents: yeasts and filamentous fungi. Rev. Iberoam. Micol. 25: 101-106. https://doi.org/10.1016/S1130-1406(08)70027-5
  35. Prasad T, Saini P, Gaur NA, Vishwakarma RA, Khan LA, Haq QM. 2005. Functional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicans. Antimicrob. Agents Chemother. 49: 3442-3452. https://doi.org/10.1128/AAC.49.8.3442-3452.2005
  36. Kanafani ZA, Perfect JR. 2008. Resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis. 46: 120-128. https://doi.org/10.1086/524071