DOI QR코드

DOI QR Code

Thermal Stress Induced Spalling of Metal Pad on Silicon Interposer

열응력에 의한 실리콘 인터포저 위 금속 패드의 박락 현상

  • Kim, Junmo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Boyeon (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Jung, Cheong-Ha (Electronic Package Research Center, Kangnam University) ;
  • Kim, Gu-sung (Electronic Package Research Center, Kangnam University) ;
  • Kim, Taek-Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2022.09.07
  • Accepted : 2022.09.30
  • Published : 2022.09.30

Abstract

Recently, the importance of electronic packaging technology has been attracting attention, and heterogeneous integration technology in which chips are stacked out-of-plane direction is being applied to the electronic packaging field. The 2.5D integration circuit is a technology for stacking chips using an interposer including TSV, and is widely used already. Therefore, it is necessary to make the interposer mechanically reliable in the packaging process that undergoes various thermal processes and mechanical loadings. Considering the structural characteristics of the interposer on which several thin films are deposited, thermal stress due to the difference in thermal expansion coefficients of materials can have a great effect on reliability. In this study, the mechanical reliability of the metal pad for wire bonding on the silicon interposer against thermal stress was evaluated. After heating the interposer to the solder reflow temperature, the delamination of the metal pad that occurred during cooling was observed and the mechanism was investigated. In addition, it was confirmed that the high cooling rate and the defect caused by handling promote delamination of the metal pads.

최근 전자 패키징 기술의 중요성이 대두되며, 칩들을 평면 외 방향으로 쌓는 이종 집적 기술이 패키징 분야에 적용되고 있다. 이 중 2.5D 집적 기술은 실리콘 관통 전극를 포함한 인터포저를 이용하여 칩들을 적층하는 기술로, 이미 널리 사용되고 있다. 따라서 다양한 열공정을 거치고 기계적 하중을 받는 패키징 공정에서 이 인터포저의 기계적 신뢰성을 확보하는 것이 필요하다. 특히 여러 박막들이 증착되는 인터포저의 구조적 특징을 고려할 때, 소재들의 열팽창계수 차이에 기인하는 열응력은 신뢰성에 큰 영향을 끼칠 수 있다. 이에 본 논문에서는 실리콘 인터포저 위 와이어 본딩을 위한 금속 패드의 열응력에 대한 기계적 신뢰성을 평가하였다. 인터포저를 리플로우 온도로 가열 후 냉각 시 발생하는 금속 패드의 박리 현상을 관측하고, 그 메커니즘을 규명하였다. 또한 높은 냉각 속도와 시편 취급 중 발생하는 결함들이 박리 양상을 촉진시킴을 확인하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(1415179217)와 KSRC 지원 사업인 미래반도체소자 원천기술개발사업(20010170)의 연구결과로 수행되었음.

References

  1. D. Liu, and S. Park, "Three-Dimensional and 2.5 Dimensional Interconnection Technology: State of the Art", Journal of Electronic Packaging, 136(1), 014001 (2014). https://doi.org/10.1115/1.4026615
  2. S. E. Kim, "Heterogeneous Device Packaging Technology for the Internet of Things Applications (in Korean)", J. Microelectron. Packag. Soc., 23(3), 1-6 (2016). https://doi.org/10.6117/kmeps.2016.23.3.001
  3. Y. Li, C. Hang, Y. Tian, W. Liu, and C. Wang, "Interposer Connection Reliability using Double-Side Solder Bump for Board-Level Vertical Interconnection", 2017 18th International Conference on Electronic Packaging Technology (ICEPT), 501-504 (2017).
  4. S. R. McCann, Y. Sato, V. Sundaram, R. R. Tummala and S. K. Sitaraman, "Study of Cracking of Thin Glass Interposers Intended for Microelectronics Packaging Substrates", 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 1938-1944 (2015).
  5. S. B. N. Gourikutty, Y. M. Chow, J. Alton, R. B. Umralkar, K. K. Chua, and S. Bhattacharya, "Defect Localization in Through-Si-Interposer Based 2.5D ICs", 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 1180-1185 (2020).
  6. C.-C. Lee, and P.-C. Huang, "Mixed Mode Interfacial Crack Energy Estimation of Glass Interposer and SiNx Coatings by using Fracture Mechanics Based Computer Methods and Experimental Validations", Theoretical and Applied Fracture Mechanics, 96, 790-794 (2018). https://doi.org/10.1016/j.tafmec.2017.11.006
  7. Y. Chen, W. Su, H.-Z. Huang, P. Lai, X.-L. Lin, and S. Chen, "Stress Evolution Mechanism and Thermo-Mechanical Reliability Analysis of Copper-Filled TSV Interposer", Eksploatacja i Niezawodnosc, 22(4), 705-714 (2020). https://doi.org/10.17531/ein.2020.4.14
  8. T. Yoon, and T.-S. Kim, "Thermo-Mechanical Reliability of TSV based 3D-IC (in Korean)", J. Microelectron. Packag. Soc., 24(1), 35 (2017). https://doi.org/10.6117/kmeps.2017.24.1.035
  9. M. Sunohara, H. Sakaguchi, A. Takano, R. Arai, K. Murayama, and M. Higashi, "Studies on Electrical Performance and Thermal Stress of a Silicon Interposer with TSVs", 2010 IEEE 60th Electronic Components and Technology Conference (ECTC), 1088-1093 (2010).
  10. J. Pang, and J. Wang, "The Thermal Stress Analysis for IC Integrations with TSV Interposer by Complement Sector Models", Journal of Electronic Materials, 43(9), 3423-3435 (2014). https://doi.org/10.1007/s11664-014-3273-4
  11. Y. J. Lin, C. C. Hsieh, C. H. Tung, and Doug C. H. Yu, "Study of the Thermo-Mechanical Behavior of Glass Interposer for Flip Chip Packaging Applications.", 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), 634-638 (2011).
  12. C. A. Sweet, J. D. Simon, D. L. Young, A. J. Ptak, and C. E. Packard, "Effect of Material Choice on Spalling Fracture Parameters to Exfoliate Thin PV Devices", 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 1189-1192 (2014).
  13. Z. Suo, and J. W. Hutchinson, "Steady-State Cracking in Brittle Substrates Beneath Adherent Films", International Journal of Solids and Structures, 25(11), 1337-1353 (1989). https://doi.org/10.1016/0020-7683(89)90096-6
  14. P. Xiao, J. Zheng, B. Dou, H. Tian, G. Cui, and M. Kashif, "Mechanical Behaviors of Granite after Thermal Shock with Different Cooling Rates", Energies, 14(13), 3721 (2021). https://doi.org/10.3390/en14133721