Acknowledgement
The work described in this paper is fully supported by a grant from the Chinese National Engineering Research Centre (CNERC) for Steel Construction (Hong Kong Branch) at The Hong Kong Polytechnic University (Project No. 1-BBV4).
References
- Bai, Y. (2008), Effect of Loading History in Necking and Fracture, Ph.D. Dissertation, Massachusetts Institute of Technology, Boston, USA. https://dspace.mit.edu/handle/1721.1/43148.
- Bai, Y. and Wierzbicki, T. (2008), "A new model of metal plasticity and fracture with pressure and Lode dependence", Int. J. Plast., 24(6), 1071-1096. https://doi.org/10.1016/j.ijplas.2007.09.004.
- Bai, Y. and Wierzbicki, T. (2009), "Application of extended Mohr-Coulomb criterion to ductile fracture", Int. J. Fract., 161(1), 1. https://doi.org/10.1007/s10704-009-9422-8.
- Barsoum, I., Faleskog, J. and Pingle, S. (2011), "The Influence of the Lode Parameter on Ductile Failure Strain in Steel", Procedia Eng., 10, 69-75. https://doi.org/10.1016/j.proeng.2011.04.014.
- Barsoum, I. and Faleskog, J. (2007a), "Rupture mechanisms in combined tension and shear-Experiments", Int. J. Solids Struct., 44(6), 1768-1786. https://doi.org/10.1016/j.ijsolstr.2006.09.031.
- Barsoum, I. and Faleskog, J. (2007b), "Rupture mechanisms in combined tension and shear-Micromechanics", Int. J. Solids Struct., 44(17), 5481-5498. https://doi.org/10.1016/j.ijsolstr.2007.01.010.
- Besson, J. (2010). "Continuum models of ductile fracture: A review", Int. J. Damage Mech., 19(1), 3-52. https://doi.org/10.1177/1056789509103482.
- Bonora, N. (1997), "A nonlinear CDM model for ductile failure", Eng. Fract. Mech., 58(1), 11-28. https://doi.org/10.1016/S0013-7944(97)00074-X.
- Bridgman, P.W. (1964), Studies in Large Plastic Flow and Fracture with Special Emphasis on the Effects of Hydrostatic Pressure. Harvard University Press, Cambridge, USA
- Chi, W.M., Kanvinde, A.M. and Deierlein, G.G. (2006), "Prediction of ductile fracture in steel connections using SMCS criterion", J. Struct. Eng., 132(2), 171-181. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(171).
- Dassault Systemes Simulia Corporation (2020), ABAQUS Analysis User's Manual Version 2020.
- Hancock, J.W. and Mackenzie, A.C. (1976), "On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states", J. Mech. Phys. Solids, 24(2), 147-160. https://doi.org/10.1016/0022-5096(76)90024-7.
- He, Q., Chen, Y., Ke, K., Yam, M.C.H. and Wang, W. (2019), "Experiment and constitutive modeling on cyclic plasticity behavior of LYP100 under large strain range", Constr. Build. Mater., 202, 507-521. https://doi.org/10.1016/j.conbuildmat.2018.12.146.
- Ho, H.C., Xiao, M., Hu, Y.F., Guo, Y.B., Chung, K.F., Yam, M.C. H. and Nethercot, D.A. (2020), "Determination of a full range constitutive model for high strength S690 steels", J. Constr. Steel Res., 174, 106275. https://doi.org/10.1016/j.jcsr.2020.106275.
- Huang, X., Ge, J., Zhao, J. and Zhao, W. (2020), "A continuous damage model of Q690D steel considering the influence of Lode parameter and its application", Constr. Build. Mater., 262, 120067. https://doi.org/10.1016/j.conbuildmat.2020.120067.
- Huanga, X. and Zhao, J. (2017), "A cumulative damage model for extremely low cycle fatigue cracking in steel structure", Struct. Eng. Mech., 62(2), 225-236. https://doi.org/10.12989/sem.2017.62.2.225.
- Jia, L.J., Ge, H., Shinohara, K. and Kato, H. (2016), "Experimental and numerical study on ductile fracture of structural steels under combined shear and tension", J. Bridge Eng., 21(5), 04016008. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000845.
- Jia, L.J., Ikai, T., Kang, L., Ge, H. and Kato, T. (2016), "Ductile cracking simulation procedure for welded joints under monotonic tension", Struct. Eng. Mech., 60(1), 51-69. https://doi.org/10.12989/SEM.2016.60.1.051.
- Jia, L.J. and Kuwamura, H. (2014), "Ductile fracture simulation of structural steels under monotonic tension", J. Struct. Eng., 140(5), 04013115. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000944.
- Johnson, G.R. and Cook, W. H. (1985), "Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures", Eng. Fract. Mech., 21(1), 31-48. https://doi.org/10.1016/0013-7944(85)90052-9.
- Kang, L., Ge, H. and Fang, X. (2016), "An improved ductile fracture model for structural steels considering effect of high stress triaxiality", Constr. Build. Mater., 115, 634-650. https://doi.org/10.1016/j.conbuildmat.2016.04.083.
- Kang, L., Ge, H., Suzuki, M. and Wu, B. (2018), "An average weight whole-process method for predicting mechanical and ductile fracture performances of HSS Q690 after a fire", Constr. Build. Mater., 191, 1023-1041. https://doi.org/10.1016/j.conbuildmat.2018.10.068.
- Kanvinde, A.M. and Deierlein, G.G. (2006), "The void growth model and the stress modified critical strain model to predict ductile fracture in structural steels", J. Struct. Eng., 132(12), 1907-1918. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1907).
- Kanvinde, A.M. and Deierlein, G.G. (2007), "Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue", J. Eng. Mech., 133(6), 701-712. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(701).
- Kanvinde, A.M., Fell, B.V., Gomez, I.R. and Roberts, M. (2008), "Predicting fracture in structural fillet welds using traditional and micromechanical fracture models", Eng. Struct., 30(11), 3325-3335. https://doi.org/10.1016/j.engstruct.2008.05.014.
- Kong, D.Y., Ren, L.M., Yang, B., Zhou, X.H. and Elchalakani, M. (2020), "Comparative study of uncoupled ductile-fracture models on fracture prediction of structural steels under monotonic loading", J. Eng. Mech., 146(8), 04020080. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001807.
- Kong, D.Y. and Yang, B. (2020), "Enhanced voids growth model for ductile fracture prediction of high-strength steel q690d under monotonic tension: experiments and numerical simulation", J. Struct. Eng., 146(6), 04020107. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002658.
- Lemaitre, J. (1985), "A continuous damage mechanics model for ductile fracture." J. Eng. Mater. Technol., 107(1), 83-89. https://doi.org/10.1115/1.3225775.
- Li, D., Uy, B., Wang, J. and Song, Y. (2020), "Behaviour and design of grade 10.9 high-strength bolts under combined actions", Steel Compos. Struct., 35(3), 327-341. https://doi.org/10.12989/SCS.2020.35.3.327.
- Li, H., Fu, M. W., Lu, J. and Yang, H. (2011), "Ductile fracture: Experiments and computations", Int. J. Plast., 27(2), 147-180. https://doi.org/10.1016/j.ijplas.2010.04.001.
- Li, W., Liao, F., Zhou, T. and Askes, H. (2016), "Ductile fracture of q460 steel: effects of stress triaxiality and lode angle", J. Constr. Steel Res., 123, 1-17. https://doi.org/10.1016/j.jcsr.2016.04.018.
- Liao, F., Wang, W. and Chen, Y. (2012), "Parameter calibrations and application of micromechanical fracture models of structural steels", Struct. Eng. Mech., 42(2), 153-174. https://doi.org/10.12989/sem.2012.42.2.153.
- Liao, F., Wang, W. and Chen, Y. (2015), "Ductile fracture prediction for welded steel connections under monotonic loading based on micromechanical fracture criteria", Eng. Struct., 94, 16-28. https://doi.org/10.1016/j.engstruct.2015.03.038.
- Lin, X.M., Yam, M.C.H., Chung, K.F. and Lam, A.C.C. (2021), "A study of net-section resistance of high strength steel bolted connections", Thin-Walled Struct., 159, 107284. https://doi.org/10.1016/j.tws.2020.107284.
- Liu, Y., Kang, L. and Ge, H. (2019). "Experimental and numerical study on ductile fracture of structural steels under different stress states", J. Constr. Steel Res., 158, 381-404. https://doi.org/10.1016/j.jcsr.2019.04.001.
- Lou, Y. and Huh, H. (2013), "Prediction of ductile fracture for advanced high strength steel with a new criterion: Experiments and simulation." J. Mater. Process. Technol., 213(8), 1284-1302. https://doi.org/10.1016/j.jmatprotec.2013.03.001
- Lou, Y. and Yoon, J.W. (2018). "Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion." Int. J. Plast., 101, 125-155. https://doi.org/10.1016/j.ijplas.2017.10.012.
- Myers, A.T., Kanvinde, A.M. and Deierlein, G.G. (2010), "Calibration of the smcs criterion for ductile fracture in steels: specimen size dependence and parameter assessment", J. Eng. Mech., 136(11), 1401-1410. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000178.
- Park, T., Abu-Farha, F. and Pourboghrat, F. (2019), "An evolutionary yield function model based on plastic work and non-associated flow rule", Metals, 9(5), 611. https://doi.org/10.3390/met9050611.
- Pineau, A., Benzerga, A.A. and Pardoen, T. (2016), "Failure of metals I: Brittle and ductile fracture", Acta Mater., 107, 424-483. https://doi.org/10.1016/j.actamat.2015.12.034.
- Rice, J.R. and Tracey, D.M. (1969), "On the ductile enlargement of voids in triaxial stress fields∗", J. Mech. Phys. Solids, 17(3), 201-217. https://doi.org/10.1016/0022-5096(69)90033-7.
- Safaei, M., Lee, M.G., Zang, S. and De Waele, W. (2014), "An evolutionary anisotropic model for sheet metals based on nonassociated flow rule approach", Comput. Mater. Sci., 81, 15-29. https://doi.org/10.1016/j.commatsci.2013.05.035.
- Simo, J.C. and Hughes, T.J.R. (1998), Computational Inelasticity. Springer, New York, USA
- Stoughton, T.B. (2002), "A non-associated flow rule for sheet metal forming", Int. J. Plast., 18(5), 687-714. https://doi.org/10.1016/S0749-6419(01)00053-5.
- Wang, Jia, Uy, B., Li, D. and Song, Y. (2020), "Progressive collapse analysis of stainless steel composite frames with beamto-column endplate connections", Steel Compos. Struct., 36(4), 427-446. https://doi.org/10.12989/SCS.2020.36.4.427.
- Wang, J. and Sun, Q. (2019), "Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading", Steel Compos. Struct., 32(2), 199-212. https://doi.org/10.12989/SCS.2019.32.2.199.
- Wang, M., Shi, Y. and Wang, Y. (2012), "Equivalent constitutive model of steel with cumulative degradation and damage", J. Constr. Steel Res., 79, 101-114. https://doi.org/10.1016/j.jcsr.2012.07.028.
- Wang, M., Shi, Y. and Wang, Y. (2015), "Application of steel equivalent constitutive model for predicting seismic behavior of steel frame", Steel Compos. Struct., 19(5), 1055-1075. https://doi.org/10.12989/SCS.2015.19.5.1055.
- Wang, Y.B., Lyu, Y.F., Wang, Y.Z., Li, G.Q. and Richard Liew, J.Y. (2020), "A reexamination of high strength steel yield criterion", Constr. Build. Mater., 230, 116945. https://doi.org/10.1016/j.conbuildmat.2019.116945.
- Wang, Y.Z., Li, G.Q., Wang, Y.B., Lyu, Y.F. and Li, H. (2020), "Ductile fracture of high strength steel under multi-axial loading", Eng. Struct., 210, 110401. https://doi.org/10.1016/j.engstruct.2020.110401.
- Wen, H. and Mahmoud, H. (2016), "New model for ductile fracture of metal alloys. i: monotonic loading", J. Eng. Mech., 142(2), 04015088. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001009.
- Wierzbicki, T., Bao, Y., Lee, Y.-W., and Bai, Y. (2005), "Calibration and evaluation of seven fracture models", Int. J. Mech. Sci., 47(4), 719-743. https://doi.org/10.1016/j.ijmecsci.2005.03.003.
- Xie, Z. and Chen, Y. (2022), "Numerical study of the robustness of steel moment connections under catenary effect", Eng. Struct., 252, 113658. https://doi.org/10.1016/j.engstruct.2021.113658.
- Xue, L. (2007), Ductile Fracture Modeling: Theory, Experimental Investigation and Numerical Verification, Ph.D. Dissertation, Massachusetts Institute of Technology, Boston, USA. https://dspace.mit.edu/handle/1721.1/40876.
- Xue, L. and Wierzbicki, T. (2008), "Ductile fracture initiation and propagation modeling using damage plasticity theory", Eng. Fract. Mech., 75(11), 3276-3293. https://doi.org/10.1016/j.engfracmech.2007.08.012.
- Yan, S., Zhao, X. and Wu, A. (2018), "Ductile fracture simulation of constructional steels based on yield-to-fracture stress-strain relationship and micromechanism-based fracture criterion", J. Struct. Eng., 144(3), 04018004. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001970.
- Yang, F., Veljkovic, M. and Liu, Y. (2020), "Ductile damage model calibration for high-strength structural steels", Constr. Build. Mater., 263, 120632. https://doi.org/10.1016/j.conbuildmat.2020.120632.
- Zhu, J., Xia, Y., Luo, H., Gu, G. and Zhou, Q. (2014), "Influence of flow rule and calibration approach on plasticity characterization of DP780 steel sheets using Hill48 model", Int. J. Mech. Sci., 89, 148-157. https://doi.org/10.1016/j.ijmecsci.2014.09.001.
- Zhuang, C., Mu, L., Zhang, J., Jiang, R. and Jia, Z. (2021), "Ductile fracture characterization of a36 steel and comparative study of phenomenological models", J. Mater. Civ. Eng., 33(1), 04020421. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003543.