Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2B5B01002577).
References
- Akbas, S.D. (2017), "Post-buckling responses of functionally graded beams with porosities", Steel Comp. Struct., 24(5), 579-589. https://doi.org/10.12989/scs.2017.24.5.579.
- Chen, D., Yang, J. and Kitipornchai, S. (2019), "Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method", Arch. Civ. Mech. Eng., 19(1), 157-170. https://doi.org/10.1016/j.acme.2018.09.004.
- Chu, L., Li, Y. and Dui, G. (2020), "Nonlinear analysis of functionally graded flexoelectric nanoscale energy harvesters", Int. J. Mech. Sci., 167, 105282. https://doi.org/10.1016/j.ijmecsci.2019.105282.
- Do, Q.C., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Comp. Struct., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243.
- Gao, Y., Xiao, W. and Zhu, H. (2020), "Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory", Steel Comp. Struct., 31(5), 469-488. https://doi.org/10.12989/scs.2019.31.5.469.
- Garcia-Macias, E., Castro-Triguero, R., Friswell, M.I., Adhikari, S. and Saez, A. (2016), "Metamodel-based approach for stochastic free vibration analysis of functionally graded carbon nanotube reinforced plates", Compos. Struct., 152, 183-198. https://doi.org/10.1016/j.compstruct.2016.05.019.
- Gilli, L., Lathouwers, D., Kloosterman, J.L. and Hagen, T.H.J.J. Van Der (2013), "Applying second-order adjoint perturbation theory to time-dependent problems", Ann. Nucl. Energy, 53, 9-18. https://doi.org/10.1016/j.anucene.2012.10.003.
- Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2019), "Stochastic low-velocity impact on functionally graded plates : Probabilistic and non-probabilistic uncertainty quantification", Compos. Part B Eng., 159, 461-480. https://doi.org/10.1016/j.compositesb.2018.09.066.
- Kiran, M.C. and Kattimani, S.C. (2018), "Assessment of porosity influence on vibration and static behavior of functionally graded magneto-electro-elastic plate: A finite element study", Eur. J. Mech. / A Solids, 71, 258-277. https://doi.org/10.1016/j.euromechsol.2018.04.006.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Li, H. and Du, Y. (2019), "Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells", Steel Comp. Struct., 33(2), 163-180. https://doi.org/10.12989/scs.2019.33.2.163.
- Li, K., Gao, W., Wu, D., Song, C. and Chen, T. (2018), "Spectral stochastic isogeometric analysis of linear elasticity", Comput. Methods Appl. Mech. Eng., 332, 157-190. https://doi.org/10.1016/j.cma.2017.12.012.
- Luo, Y., Zhan, J., Xing, J. and Kang, Z. (2019), "Non-probabilistic uncertainty quantification and response analysis of structures with a bounded field model", Comput. Methods Appl. Mech. Eng., 347, 663-678. https://doi.org/10.1016/j.cma.2018.12.043.
- Moita, J.S., Araujo, A.L., Correia, V.F., Mota Soares, C.M. and Herskovits, J. (2018), "Buckling and nonlinear response of functionally graded plates under thermo-mechanical loading", Compos. Struct., 202, 719-730. https://doi.org/10.1016/j.compstruct.2018.03.082.
- Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin-Walled Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.
- Nam, V.H., Trung, N.T. and Hoa, L.K. (2019), "Buckling and postbuckling of porous cylindrical shells with functionally graded composite coating under torsion in thermal environment", Thin-Walled Struct., 144, 106253. https://doi.org/10.1016/j.tws.2019.106253.
- Naskar, S., Mukhopadhyay, T., Sriramula, S. and Adhikari, S. (2017), "Stochastic natural frequency analysis of damaged thinwalled laminated composite beams with uncertainty in micromechanical properties", Compos. Struct., 160, 312-334. https://doi.org/10.1016/j.compstruct.2016.10.035.
- Nguyen, T.M.S., Trinh, M.C. and Kim, S.E. (2021), "Uncertainty quantification of ultimate compressive strength of CCFST columns using hybrid machine learning model", Eng. Comput. https://doi.org/10.1007/s00366-021-01339-1.
- Ni, P., Li, J., Hao, H., Xia, Y. and Du, X. (2019), "Stochastic dynamic analysis of marine risers considering fluid-structure interaction and system uncertainties", Eng. Struct., 198, 109507. https://doi.org/10.1016/j.engstruct.2019.109507.
- Noor, A.K. and Balch, C.D. (1984), "Hybrid Perturbation / Bubnov-Galerkin Technique for Nonlinear Thermal Analysis", AIAA J., 22(2), 287-294. https://doi.org/10.2514/3.8381.
- Pouresmaeeli, S., Fazelzadeh, S.A., Ghavanloo, E. and Marzocca, P. (2018), "Uncertainty propagation in vibrational characteristics of functionally graded carbon nanotube-reinforced composite shell panels", Int. J. Mech. Sci., 149, 549-558. https://doi.org/10.1016/j.ijmecsci.2017.05.049.
- Quan, T.Q., Cuong, N.H. and Duc, N.D. (2019), "Nonlinear buckling and post-buckling of eccentrically oblique stiffened sandwich functionally graded double curved shallow shells", Aerosp. Sci. Technol., 90, 169-180. https://doi.org/10.1016/j.ast.2019.04.037.
- Rice, J.A. (2006), Mathematical Statistics and Data Analysis, Duxbury Press, Belmont, CA, USA.
- Singh, S., Zafar, S., Talha, M., Gao, W. and Hui, D. (2018), "State of the art of composite structures in non-deterministic framewo : A review", Thin-Walled Struct., 132, 700-716. https://doi.org/10.1016/j.tws.2018.09.016.
- Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2018), "Thermal post-buckling analysis of functionally graded material structures using a modified FSDT", Int. J. Mech. Sci., 144, 74-89. https://doi.org/10.1016/j.ijmecsci.2018.05.033.
- Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2019), "A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells", Eng. Struct., 178, 444-459. https://doi.org/10.1016/j.engstruct.2018.10.047.
- Trinh, M.C. and Jun, H. (2021a), "Stochastic vibration analysis of functionally graded beams using artificial neural networks", Struct. Eng. Mech. 78, 529-543. https://doi.org/10.12989/sem.2021.78.5.529.
- Trinh, M.C. and Jun, H. (2021b), "Stochastic bending and buckling analysis of laminated composite plates using Latin hypercube sampling", Eng. Comput. https://doi.org/10.1007/s00366-021-01544-y.
- Trinh, M.C. and Kim, S.E. (2018), "Nonlinear thermomechanical behaviors of thin functionally graded sandwich shells with double curvature". Compos. Struct., 195, 335-348. https://doi.org/10.1016/j.compstruct.2018.04.067.
- Trinh, M.C. and Kim, S.E. (2019a), "Nonlinear stability of moderately thick functionally graded sandwich shells with double curvature in thermal environment", Aerosp. Sci. Technol., 84, 672-685. https://doi.org/10.1016/j.ast.2018.09.018.
- Trinh, M.C. and Kim, S.E. (2019b), "A three variable refined shear deformation theory for porous functionally graded doubly curved shell analysis", Aerosp. Sci. Technol., 94, 105356. https://doi.org/10.1016/j.ast.2019.105356.
- Trinh, M.C. and Kim, S.E. (2021), "Deterministic and stochastic thermomechanical nonlinear dynamic responses of functionally graded sandwich plates", Compos. Struct. 274, 114359. https://doi.org/10.1016/j.compstruct.2021.114359.
- Trinh, M.C., Nguyen, D.D. and Kim, S.E. (2019), "Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature", Aerosp. Sci. Technol., 87, 119-132. https://doi.org/10.1016/j.ast.2019.02.010.
- Trinh, M.C., Mukhopadhyay, T. and Kim, S.E. (2020), "A semianalytical stochastic buckling quantification of porous functionally graded plates", Aerosp. Sci. Technol., 105, 105928. https://doi.org/10.1016/j.ast.2020.105928.
- Trinh, M.C., Nguyen, S.N., Jun, H. and Nguyen-Thoi, T. (2021), "Stochastic buckling quantification of laminated composite plates using cell-based smoothed finite elements", Thin-Walled Struct. 163, 107674. https://doi.org/10.1016/j.tws.2021.107674.
- Vishwanathan, A. and Vio, G.A. (2019), "Numerical and experimental assessment of random matrix theory to quantify uncertainty in aerospace structures", Mech. Syst. Signal Process., 118, 408-422. https://doi.org/10.1016/j.ymssp.2018.09.006.
- Wang, W., Chen, G., Yang, D. and Kang, Z. (2019), "Stochastic isogeometric analysis method for plate structures with random uncertainty", Comput. Aided Geom. Des., 74, 101772. https://doi.org/10.1016/j.cagd.2019.101772.
- Xu, K., Yuan, Y. and Li, M. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel Comp. Struct., 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633.
- Yang, H.S., Dong, C.Y., Qin, X.C. and Wu, Y.H. (2020), "Vibration and buckling analyses of FGM plates with multiple internal defects using XIGA-PHT and FCM under thermal and mechanical loads", Appl. Math. Model., 78, 433-481. https://doi.org/10.1016/j.apm.2019.10.011.
- Zenkour, A.M. and Aljadani, M.H. (2019), "Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates", Eur. J. Mech. / A Solids, 78, 103835. https://doi.org/10.1016/j.euromechsol.2019.103835.
- Zhang, D.G. (2015), "Nonlinear static analysis of FGM infinite cylindrical shallow shells based on physical neutral surface and high order shear deformation theory", Appl. Math. Model., 39(5-6), 1587-1596. https://doi.org/10.1016/j.apm.2014.09.023.
- Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "A unified solution for the vibration analysis of functionally graded porous (FGP) shallow shells with general boundary conditions", Compos. Part B Eng., 156, 406-424. https://doi.org/10.1016/j.compositesb.2018.08.115.
- Zhou, Y. and Zhang, X. (2019), "Natural frequency analysis of functionally graded material beams with axially varying stochastic properties", Appl. Math. Model., 67, 85-100. https://doi.org/10.1016/j.apm.2018.10.011.
- Zhou, C., Zhang, Z., Zhang, J. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Comp. Struct., 34(2), 215-226. https://doi.org/10.12989/scs.2020.34.2.215.