과제정보
This work has been partially supported by POR Calabria FESR-FSE 2014-2020, with the grant for research project "IoT&B", CUP J48C17000230006.
참고문헌
- W. Ackermann, Zum Hilbe rtschen Aufbau der reellen Zahlen, Mathematische Annalen 99 (1928), 118-133. Doi: 10.1007/BF01459088
- L. Antoniotti, F. Caldarola, G. d'Atri and M. Pellegrini, New approaches to basic calculus: an experimentation via numerical computation, In Y.D. Sergeyev and D. Kvasov (eds.), NUMTA 2019 - Numerical Computations: Theory and Algorithms, LNCS 11973, Springer, Cham (2020), 329-342. Doi: 10.1007/978-3-030-39081-529
- L. Antoniotti, F. Caldarola and M. Maiolo, Infinite numerical computing applied to Peano's, Hilbert's, and Moore's curves, Mediterranean J. of Mathematics 17 (2020). Doi:10.1007/s00009-020-01531-5
- A.A. Bennett, Note on an Operation of the Third Grade, Annals of Mathematics Second Series 17 (1915), 74-75. Doi: 10.2307/2007124
- J. Bowers, Exploding Array Function. http://www.polytope.net/hedrondude/array.htm
- A. Caicedo, Goodstein's function, Revista Colombiana de Matematicas 41 (2007), 381-391.
- F. Caldarola, The exact measures of the Sierpinski d-dimensional tetrahedron in connection with a Diophantine nonlinear system, Comm. Nonlinear Science and Numer. Simulation 63 (2018), 228-238. Doi: 10.1016/j.cnsns.2018.02.026
- F. Caldarola, The Sierpinski curve viewed by numerical computations with infinities and infinitesimals, Appl. Math. Comput. 318 (2018), 321-328. Doi: 10.1016/j.amc.2017.06.024
- F. Caldarola, D. Cortese, G. d'Atri and M. Maiolo, Paradoxes of the infinite and ontological dilemmas between ancient philosophy and modern mathematical solutions, In Y.D. Sergeyev and D. Kvasov (eds.), NUMTA 2019 - Numerical Computations: Theory and Algorithms, LNCS 11973, Springer, Cham (2020), 358-372. Doi: 10.1007/978-3-030-39081-531
- F. Caldarola, G. d'Atri, M. Maiolo and G. Pirillo, New algebraic and geometric constructs arising from Fibonacci numbers. In honor of Masami Ito, Soft Computing 24 (2020), 17497- 17508. Doi: 10.1007/s00500-020-05256-1
- F. Caldarola, G. d'Atri, M. Maiolo and G. Pirillo, The sequence of Carboncettus octagons, In Y.D. Sergeyev and D. Kvasov (eds.), NUMTA 2019 - Numerical Computations: Theory and Algorithms, LNCS 11973, Springer, Cham (2020), 373-380. Doi: 10.1007/978-3-030-39081-532
- F. Caldarola, G. d'Atri, P. Mercuri and V. Talamanca, On the arithmetic of Knuth's powers and some computational results about their density, In Y.D. Sergeyev and D. Kvasov (eds.), NUMTA 2019 - Numerical Computations: Theory and Algorithms, LNCS 11973, Springer, Cham (2020), 381-388. Doi: 10.1007/978-3-030-39081-533
- F. Caldarola and M. Maiolo, On the topological convergence of multi-rule sequences of sets and fractal patterns, Soft Computing 24 (2020), 17737-17749. Doi: 10.1007/s00500- 020-05358-w
- F. Caldarola, M. Maiolo and V. Solferino, A new approach to the Z-transform through infinite computation, Communications in Nonlinear Science and Numerical Simulation 82 (2020), 105019. Doi: 10.1016/j.cnsns.2019.105019
- J.W.S. Cassels, An introduction to Diophantine approximation, Cambridge University Press, London, New York, 1957.
- E. Cichon, A short proof of two recently discovered independence results using recursive theoretic methods, Proceedings of the American Mathematical Society 87 (1983), 704-706.
- M. Cococcioni, A. Cudazzo, M. Pappalardo and Y.D. Sergeyev, Solving the lexicographic multi-objective mixed-integer linear programming problem using branch-and-bound and grossone methodology, Communications in Nonlinear Science and Numerical Simulation 84 (2020), 105177. Doi: 10.1016/j.cnsns.2020.105177
- J.H. Conway and R.K. Guy, The Book of Numbers, Copernicus Books, 1996.
- G. d'Atri, Logic-based consistency checking of XBRL instances, IJACT 3 (2014), 126-131.
- A. Falcone, A. Garro, M.S. Mukhametzhanov and Y.D. Sergeyev, Representation of grossone-based arithmetic in simulink for scientific computing, Soft Computing 24 (2020), 17525-17539. Doi: 10.1007/s00500-020-05221-y
- R.L. Goodstein, On the restricted ordinal theorem, The Journal of Symbolic Logic 9 (1944), 33-41. https://doi.org/10.2307/2268019
- R.L. Goodstein, Transfinite ordinals in recursive number theory, The Journal of Symbolic Logic 12 (1947), 123-129. Doi: 10.2307/2266486
- L. Kirby and J. Paris, Accessible independence results for Peano arithmetic, Bulletin of the London Mathematical 14 (1982), 285-293. https://doi.org/10.1112/blms/14.4.285
- D.E. Knuth, Mathematics and Computer Science: Coping with finiteness, Science 194 (1976), 1235-1242. Doi: 10.1126/science.194.4271.1235
- A. Leonardis, Continued fractions in local fields and nested and nested automorphisms, Ph.D. thesis.
- A. Leonardis, G. d'Atri and F. Caldarola, Beyond Knuth's notation for unimaginable numbers within computational number theory, International Electronic Journal of Algebra 31 (2022), 55-73. Doi: 10.24330/ieja.1058413
- R. Munafo, Inventing New Operators and Functions, Large Numbers at MROB. Retrieved from website on 19-11-2019.
- R. Munafo, Versions of Ackermann's Function, Large Numbers at MROB. Retrieved from website on 19-11-2019.
- K.K. Nambiar, Ackermann Functions and Transfinite Ordinals, Applied Mathematics Letters 8 (1995), 51-53. Doi: 10.1016/0893-9659(95)00084-4
- J.A. Perez, A new proof of Goodsteinss Theorem, preprint (arXiv: 0904.1957).
- Y.D. Sergeyev, Lagrange Lecture: Methodology of numerical computations with infinities and infinitesimals, Rend Semin Matematico Univ Polit Torino 68 (2010), 95-113.
- Y.D. Sergeyev, D.E. Kvasov and M.S. Mukhametzhanov, On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales, Communications in Nonlinear Science and Numerical Simulation 59 (2018), 319-330. Doi:10.1016/j.cnsns.2017.11.013
- H. Steinhaus Mathematical Snapshots, Oxford University Press, 3rd Edition, New York, 1969.
- M.M. Zuckerman, Sets and Transfinite Numbers, Macmillan, 1974.