DOI QR코드

DOI QR Code

COINCIDENCE POINT AND FIXED POINT THEOREMS IN PARTIAL METRIC SPACES FOR CONTRACTIVE TYPE MAPPINGS WITH APPLICATIONS

  • SALUJA, G.S. ;
  • KIM, JONG KYU (Department of Mathematics Education, Kyungnam University) ;
  • LIM, WON HEE (Department of Mathematics Education, Kyungnam University)
  • Received : 2022.01.12
  • Accepted : 2022.07.06
  • Published : 2022.09.30

Abstract

The purpose of this article is to establish some fixed point theorems, a common fixed point theorem and a coincidence point theorem via contractive type condition in the framework of complete partial metric spaces and give some examples in support of our results. As an application to the results, we give some fixed point theorems for integral type contractive conditions. The results presented in this paper extend and generalize several results from the existing literature.

Keywords

References

  1. T. Abdeljawad, E. Karapinar and K. Tas, Existence and uniqueness of common fixed point partial metric spaces, Appl. Math. Lett. 24 (2011), 1900-1904. https://doi.org/10.1016/j.aml.2011.05.014
  2. A. Mutlu, A.H. Ansari, C-class functions on coupled fixed point theorem for mixed monotone mappings on partially ordered dislocated quasi metric spaces, Nonlinear Funct. Anal. Appl. 22 (2017), 99-106. https://doi.org/10.22771/NFAA.2017.22.01.07
  3. H. Aydi, M. Abbas and C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topology and Its Appl. 159 (2012), 3234-3242. https://doi.org/10.1016/j.topol.2012.06.012
  4. S. Banach, Surles operation dans les ensembles abstraits et leur application aux equation integrals, Fund. Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
  5. M. Bousselsal and Z. Mostefaoui, Some common fixed point results in partial metrics spaces for generalized rational type contraction mappings, Nonlinear Funct. Anal. Appl. 20 (2015), 43-54.
  6. A. Branciari, A fixed point theorem for mapping satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002), 531-536. https://doi.org/10.1155/S0161171202007524
  7. S.K. Chatterjae, Fixed point theorems compactes, Rend. Acad. Bulgare Sci. 25 (1972), 727-730.
  8. E. Karapinar and U. Yuksel, Some common fixed point theorems in partial metric space, J. Appl. Math. 2011 (2011), Article ID: 263621, 2011.
  9. J.K. Kim, G.A. Okeke and W.H. Lim, Common coupled fixed point theorems for wcompatible mappings in partial metric spaces, Global J. Pure Appl. Math. 13 (2017), 519-536.
  10. H.P.A. Kunzi, Nonsymmetric distances and their associated topologies about the origins of basic ideas in the area of asymptotic topology, Handbook of the History Gen. Topology (eds. C.E. Aull and R. Lowen), Kluwer Acad. Publ., 3 (2001), 853-868.
  11. D. Lateef, Common fixed point theorems for compatible mappings of type (A) satisfying certain contractive mappings in partial metric space, J. Nonlinear Sci. Appl. 12 (2019), 38-47. https://doi.org/10.22436/jnsa.012.01.04
  12. S.G. Matthews, Partial metric topology, Research report 2012, Dept. Computer Science, University of Warwick, 1992.
  13. S.G. Matthews, Partial metric topology, Proceedings of the 8th summer conference on general topology and applications, Annals of the New York Academy of Sciences, 728 (1994), 183-197.
  14. H.K. Nashine, A. Gupta, Z. Kadelburg, A.K. Sharma, Fixed point results in orbitally 0-σ-complete metric-like spaces via rational contractive conditions, Nonlinear Funct. Anal. Appl. 21 (2016), 33-54. https://doi.org/10.22771/NFAA.2016.21.01.03
  15. H.K. Nashine, Z. Kadelburg, S. Radenovic and J.K. Kim, Fixed point theorems under Hardy-Rogers contractive conditions on 0-complete ordered partial metric spaces, Fixed Point Theory Appl. 2012 (2012), 1-15. https://doi.org/10.1186/1687-1812-2012-1
  16. S. Poonkundran and K.M. Dharmalingam, Some common and coincidence fixed point results in cone metric spaces, Nonlinear Funct. Anal. Appl. 22 (2017), 449-458. https://doi.org/10.22771/NFAA.2017.22.03.02
  17. M. Schellekens, A characterization of partial metrizibility: domains are quantifiable, Theoritical Computer Science 305 (2003), 409-432. https://doi.org/10.1016/S0304-3975(02)00705-3
  18. O. Vetro, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topology 6 (2005), 229-240. https://doi.org/10.4995/agt.2005.1957
  19. P. Waszkiewicz, Partial metrizibility of continuous posets, Math. Structures Comput. Sci. 16 (2006), 359-372. https://doi.org/10.1017/S0960129506005196