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COINCIDENCE POINT AND FIXED POINT THEOREMS IN
PARTIAL METRIC SPACES FOR CONTRACTIVE TYPE

MAPPINGS WITH APPLICATIONS

G.S. SALUJA, JONG KYU KIM∗ AND WON HEE LIM

Abstract. The purpose of this article is to establish some fixed point the-
orems, a common fixed point theorem and a coincidence point theorem
via contractive type condition in the framework of complete partial metric
spaces and give some examples in support of our results. As an application
to the results, we give some fixed point theorems for integral type contrac-
tive conditions. The results presented in this paper extend and generalize
several results from the existing literature.
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1. Introduction

The notion of partial metric space was originally developed by Matthews
([12, 13]) to provide mechanism generalizing metric space theories. A partial
metric space is an extension of metric by replacing the condition d(x, x) = 0 of
the (usual) metric with the inequality d(x, x) ≤ d(x, y) for all x, y. Also, this
concept provide to study denotational semantics of dataflow networks [2, 5, 9,
12, 13, 14, 17, 19]. In partial metric spaces the distance of a point in the self may
not be zero. Introducing partial metric space, Matthews extended the Banach
contraction principle [4] and proved the fixed point theorem in this space.

Matthews gave some basic definitions and properties on partial metric space
such as Cauchy sequence, convergent sequence etc. Due to importance of the
fixed point theory it is very interesting to study some fixed point theorems on
different concepts.

Now, we give some basic structures and results on the concept of partial
metric space (PMS).
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Definition 1.1. ([13]) Let X be a nonempty set and p : X ×X → R+ be such
that for all x, y, z ∈ X the followings are satisfied:
(P1) x = y if and only if p(x, x) = p(x, y) = p(y, y) (equality),
(P2) p(x, x) ≤ p(x, y) (small self-distance),
(P3) p(x, y) = p(y, x) (symmetry),
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z) (triangularity).

Then p is called a partial metric on X and the pair (X, p) is called a partial
metric space.

Remark 1.1. It is clear that if p(x, y) = 0, then x = y. But, on the contrary
p(x, x) need not be zero.

Example 1.2. ([3]) Let X = R+ and p : X × X → R+ given by p(x, y) =
max{x, y} for all x, y ∈ R+. Then (R+, p) is a partial metric space.

Example 1.3. ([3]) Let X = {[a, b] : a, b ∈ R, a ≤ b}. Then p
(
[a, b], [c, d]

)
=

max{b, d} −min{a, c} defines a partial metric p on X.

Various applications of this space has been extensively investigated by many
authors (see [10], [18] for details).

Remark 1.2. ([8]) Let (X, p) be a partial metric space.
(A1) The function ds : X ×X → R+ defined as ds(x, y) = 2p(x, y)− p(x, x)−

p(y, y) is a (usual) metric on X and (X, ds) is a (usual) metric space.
(A2) The function dt : X × X → R+ defined as dt(x, y) = max{p(x, y) −

p(x, x), p(x, y)−p(y, y)} is a (usual) metric on X and (X, dt) is a (usual)
metric space.

Note also that each partial metric p on X generates a T0 topology τp on
X, whose base is a family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0} where
Bp(x, ε) = {y ∈ X : p(x, y) ≤ p(x, x) + ε} for all x ∈ X and ε > 0.

Definition 1.4. ([13]) Let (X, p) be a partial metric space. Then
(B1) a sequence {xn} in (X, p) is said to be convergent to a point x ∈ X if

and only if p(x, x) = limn→∞ p(xn, x),
(B2) a sequence {xn} is called a Cauchy sequence if limm,n→∞ p(xm, xn) exists

and finite,
(B3) (X, p) is said to be complete if every Cauchy sequence {xn} in X con-

verges to a point x ∈ X with respect to τp. Furthermore,
lim

m,n→∞
p(xm, xn) = lim

n→∞
p(xn, x) = p(x, x).

Definition 1.5. ([15]) Let (X, p) be a partial metric space. Then
(C1) a sequence {xn} in (X, p) is called 0-Cauchy if limm,n→∞ p(xm, xn) = 0,
(C2) (X, p) is said to be 0-complete if every 0-Cauchy sequence {xn} in X

converges to a point x ∈ X such that p(x, x) = 0.
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Definition 1.6. Let (X, p) be a partial metric space. A point y ∈ X is called
point of coincidence of two self mappings T and f on X if there exists a point
x ∈ X such that y = Tx = fx.

Lemma 1.7. ([12, 13]) Let (X, p) be a partial metric space. Then
(i) a sequence {xn} in (X, p) is a Cauchy sequence if and only if it is a

Cauchy sequence in the metric space (X, ds),
(ii) (X, p) is complete if and only if the metric space (X, ds) is complete,
(iii) a subset E of a partial metric space (X, p) is closed if a sequence {xn}

in E such that {xn} converges to some x ∈ X, then x ∈ E.

Lemma 1.8. ([1]) Assume that xn → z as n → ∞ in a partial metric space
(X, p) such that p(z, z) = 0. Then limn→∞ p(xn, y) = p(z, y) for every y ∈ X.

The purpose of this paper is to establish some fixed point theorems, a com-
mon fixed point theorem and a coincidence point theorem via contractive type
mappings in the setting of partial metric spaces. Our results extend several
results from the existing literature.

2. Main Results

Now, we are in a position to introduce some fixed point theorems, a coinci-
dence point theorems and a common fixed point theorems in a partial metric
spaces.

2.1. Fixed point theorems.

Theorem 2.1. Let (X, p) be a complete partial metric space and let T : X → X
be a mapping satisfying the inequality

p(Tx, Ty) ≤ λ max{p(x, y), p(x, Tx), p(y, Ty)}
+µ [p(x, Ty) + p(y, Tx)], (1)

for all x, y ∈ X, where λ, µ ≥ 0 are constants such that 0 ≤ λ + 2µ < 1. Then
T has a unique fixed point in X.

Proof. Let x0 ∈ X. We construct the iterative sequence {xn} which is defined as
xn = Txn−1 for n = 1, 2, 3, . . . , then xn = Tnx0. If xn = xn+1 for some n ∈ N,
then xn is a fixed point of T . So, we assume that xn ̸= xn+1 for all n ∈ N. From
(1) and (P4), we have

p(xn, xn+1) = p(Txn−1, Txn)

≤ λ max{p(xn−1, xn), p(xn−1, Txn−1), p(xn, Txn)}
+µ [p(xn−1, Txn) + p(xn, Txn−1)]

= λ max{p(xn−1, xn), p(xn−1, xn), p(xn, xn+1)}
+µ [p(xn−1, xn+1) + p(xn, xn)]

≤ λ max{p(xn−1, xn), p(xn−1, xn), p(xn, xn+1)}
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+µ [p(xn−1, xn) + p(xn, xn+1)− p(xn, xn) + p(xn, xn)]

= λ max{p(xn−1, xn), p(xn, xn+1)}
+µ [p(xn−1, xn) + p(xn, xn+1)]. (2)

(i) If max{p(xn−1, xn), p(xn, xn+1)} = p(xn, xn+1), then from (2), we obtain
p(xn, xn+1) ≤ λ p(xn, xn+1) + µ [p(xn−1, xn) + p(xn, xn+1)]

= (λ+ µ) p(xn, xn+1) + µ p(xn−1, xn).

The above inequality implies
(1− λ− µ)p(xn, xn+1) ≤ µ p(xn−1, xn),

that is,
p(xn, xn+1) ≤

( µ

1− λ− µ

)
p(xn−1, xn)

or
p(xn, xn+1) ≤ t p(xn−1, xn), (3)

where t =
(

µ
1−λ−µ

)
< 1 since by hypothesis 0 ≤ λ+ 2µ < 1.

(ii) If max{p(xn−1, xn), p(xn, xn+1)} = p(xn−1, xn), then from (2), we obtain
p(xn, xn+1) ≤ λ p(xn−1, xn) + µ [p(xn−1, xn) + p(xn, xn+1)]

= (λ+ µ) p(xn−1, xn) + µ p(xn, xn+1).

The above inequality implies
(1− µ)p(xn, xn+1) ≤ (λ+ µ) p(xn−1, xn),

that is,
p(xn, xn+1) ≤

(λ+ µ

1− µ

)
p(xn−1, xn)

or
p(xn, xn+1) ≤ t′ p(xn−1, xn), (4)

where t′ =
(
λ+µ
1−µ

)
< 1 since by hypothesis 0 ≤ λ+ 2µ < 1.

Let q = max{t, t′} < 1. Then from above two cases, we obtain
p(xn, xn+1) ≤ q p(xn−1, xn), (5)

where q = λ+ 2µ < 1.
Set Dn = p(xn, xn+1), then from (5), we obtain

Dn ≤ qDn−1 ≤ q2Dn−2 ≤ · · · ≤ qnD0.

Now we show that {xn} is a Cauchy sequence in X. Let m,n > 0 withm > n.
Then
p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xn+m−1, xm)

−p(xn+1, xn+1)− p(xn+2, xn+2)− · · · − p(xn+m−1, xn+m−1)

≤ qnp(x0, x1) + qn+1p(x0, x1) + · · ·+ qn+m−1p(x0, x1)
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= qn[p(x0, x1) + qp(x0, x1) + · · ·+ qm−1p(x0, x1)]

= qn[1 + q + · · ·+ qm−1]D0

≤ qn
(1− qm−1

1− q

)
D0.

Taking n,m→ ∞ in the above inequality, we get p(xn, xm) → 0 since 0 < q < 1,
and hence {xn} is a Cauchy sequence in X. Thus by Lemma 1.7 this sequence
will also Cauchy in (X, ds). In addition, since (X, p) is complete, (X, ds) is also
complete. Thus there exists x ∈ X such that xn → x as n → ∞. Moreover by
Lemma 1.8,

p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm) = 0, (6)

implies
lim
n→∞

ds(x, xn) = 0. (7)

Now, we show that x is a fixed point of T . Notice that due to (6), we have
p(x, x) = 0. As

p(x, Tx) ≤ p(x, xn+1) + p(xn+1, Tx)− p(xn+1, xn+1)

= p(x, xn+1) + p(Txn, Tx)− p(xn+1, xn+1)

≤ p(x, xn+1) + λmax{p(xn, x), p(xn, Txn), p(x, Tx)}
+µ [p(xn, Tx) + p(x, Txn)]

= p(x, xn+1) + λ max{p(xn, x), p(xn, xn+1), p(x, Tx)}
+µ [p(xn, Tx) + p(x, xn+1)]. (8)

Taking n→ ∞ in equation (8) and using equation (6) and Lemma 1.8, we obtain
p(x, Tx) ≤ λ p(x, Tx) + µ p(x, Tx)

= (λ+ µ)p(x, Tx),

which implies
(1− λ− µ)p(x, Tx) ≤ 0.

Hence p(x, Tx) = 0 and x = Tx, This shows that x is a fixed point of T .
Now we show that the fixed point of T is unique. For this, we suppose that

u is another fixed point of T , that is, u = Tu with u ̸= x. Then from (1) and
(6), we have

p(x, u) ≤ p(Tx, Tu)

≤ λ max{p(x, u), p(x, Tx), p(u, Tu)}
+µ [p(x, Tu) + p(u, Tx)]

= λ max{p(x, u), p(x, x), p(u, u)}
+µ [p(x, u) + p(u, x)],

≤ (λ+ 2µ)p(x, u),
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< p(x, u).

This is a contraction. Therefore, we have p(x, u) = 0 and x = u. This shows
that the fixed point of T is unique. This completes the proof. □

Theorem 2.2. Let (X, p) be a complete partial metric space and let T : X → X
be a mapping satisfying the inequality for some positive integer n,

p(Tnx, Tny) ≤ λ max{p(x, y), p(x, Tnx), p(y, Tny)}
+µ [p(x, Tny) + p(y, Tnx)], (9)

for all x, y ∈ X, where λ, µ ≥ 0 are constants such that 0 ≤ λ + 2µ < 1. Then
T has a unique fixed point in X.

Proof. Let F = Tn. Then from (9), we have

p(Fx, Fy) ≤ λ max{p(x, y), p(x, Fx), p(y, Fy)}
+µ [p(x, Fy) + p(y, Fx)],

for all x, y ∈ X. So by Theorem 2.1, F has a unique fixed point, that is, Tn has
a unique fixed point u0. Since Tn(Tu0) = T (Tnu0) = Tu0, Tu0 is also a fixed
point of Tn. Hence Tu0 = u0, this means that u0 is a fixed point of T . Since
the fixed point of T is also a fixed point of Tn, so the fixed point of T is unique.
This completes the proof. □

If we take max{p(x, y), p(x, Tx), p(y, Ty)} = p(x, y) and µ = 0 in Theorem
2.1, then we obtain the following result as corollary due to Banach contraction
mapping principle [4] in a partial metric space.

Corollary 2.3. Let (X, p) be a complete partial metric space and let T : X → X
be a mapping satisfying the inequality:

p(Tx, Ty) ≤ λ p(x, y)

for all x, y ∈ X, where 0 ≤ λ < 1 is a constant. Then T has a unique fixed point
in X.

If we take λ = 0 in Theorem 2.1, then we obtain the following result as
corollary due to Chatterjae [7] in a partial metric space.

Corollary 2.4. Let (X, p) be a complete partial metric space and let T : X → X
be a mapping satisfying the inequality:

p(Tx, Ty) ≤ µ [p(x, Ty) + p(y, Tx)]

for all x, y ∈ X, where 0 ≤ µ < 1
2 is a constant. Then T has a unique fixed

point in X.

The following results are obtain from Theorem 2.1.
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Corollary 2.5. Let (X, p) be a complete partial metric space and let T : X → X
be a mapping satisfying the inequality

p(Tx, Ty) ≤ λ max
{
p(x, y), p(x, Tx), p(y, Ty),

1

2
[p(x, Ty) + p(y, Tx)]

}
for all x, y ∈ X, where λ ∈ [0, 1) is a constant. Then T has a unique fixed point
in X.

Proof. Follows from Theorem 2.1, by noting that

λ max
{
p(x, y), p(x, Tx), p(y, Ty),

1

2
[p(x, Ty) + p(y, Tx)]

}

≤ λ max
{
p(x, y), p(x, Tx), p(y, Ty)

}
+ 2µ

(p(x, Ty) + p(y, Tx)

2

)
.

□

Corollary 2.6. Let (X, p) be a complete partial metric space and let T : X → X
be a mapping satisfying the inequality

p(Tx, Ty) ≤ r1 p(x, y) + r2 p(x, Tx) + r3 p(y, Ty) +
r4
2
[p(x, Ty) + p(y, Tx)]

for all x, y ∈ X, where r1, r2, r3, r4 ≥ 0 are constants such that r1+r2+r3+r4 <
1. Then T has a unique fixed point in X.

Proof. Follows from Corollary 2.5, by noting that

r1 p(x, y) + r2 p(x, Tx) + r3 p(y, Ty) +
r4
2
[p(x, Ty) + p(y, Tx)]

≤ (r1 + r2 + r3 + r4)max
{
p(x, y), p(x, Tx), p(y, Ty),

1

2
[p(x, Ty) + p(y, Tx)]

}
.

□

2.2. Coincidence point theorems.

Theorem 2.7. Let T and f be two self-maps on a complete partial metric space
X satisfying the inequality

p(Tx, Ty) ≤ λ max{p(fx, fy), p(fx, Tx), p(fy, Ty)}
+µ [p(fx, Ty) + p(fy, Tx)], (10)

for all x, y ∈ X, where λ, µ ≥ 0 are constants such that 0 ≤ λ + 2µ < 1. If the
range of f contains the range of T and f(X) is a complete subspace of X, then
T and f have a coincidence point.
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Proof. Let x0 ∈ X and choose a point x1 in X such that Tx0 = fx1, . . . , Txn =
fxn+1. Then from (10) and (P4), we get
p(fxn, fxn+1) = p(Txn−1, Txn)

≤ λ max{p(fxn−1, fxn), p(fxn−1, Txn−1), p(fxn, Txn)}
+ µ [p(fxn−1, Txn) + p(fxn, Txn−1)]

= λ max{p(fxn−1, fxn), p(fxn−1, fxn), p(fxn, fxn+1)}
+ µ [p(fxn−1, fxn+1) + p(fxn, fxn)]

≤ λ max{p(fxn−1, fxn), p(fxn−1, fxn), p(fxn, fxn+1)}
+ µ [p(fxn−1, fxn) + p(fxn, fxn+1)−p(fxn, fxn) + p(fxn, fxn)]

≤ λ max{p(fxn−1, fxn), p(fxn, fxn+1)}
+ µ [p(fxn−1, fxn) + p(fxn, fxn+1)]. (11)

(i) If max{p(fxn−1, fxn), p(fxn, fxn+1)} = p(fxn, fxn+1), then from (11),
we obtain
p(fxn, fxn+1) ≤ λ p(fxn, fxn+1) + µ [p(fxn−1, fxn) + p(fxn, fxn+1)]

= (λ+ µ) p(fxn, fxn+1) + µ p(fxn−1, fxn).

The above inequality implies
(1− λ− µ)p(fxn, fxn+1) ≤ µ p(fxn−1, fxn),

that is,
p(fxn, fxn+1) ≤

( µ

1− λ− µ

)
p(fxn−1, fxn)

or
p(fxn, fxn+1) ≤ t p(fxn−1, fxn), (12)

where t =
(

µ
1−λ−µ

)
< 1 since by hypothesis 0 ≤ λ+ 2µ < 1.

(ii) If max{p(fxn−1, fxn), p(fxn, fxn+1)} = p(fxn−1, fxn), then from (11),
we obtain
p(fxn, fxn+1) ≤ λ p(fxn−1, fxn) + µ [p(fxn−1, fxn) + p(fxn, fxn+1)]

= (λ+ µ) p(fxn−1, fxn) + µ p(fxn, fxn+1).

The above inequality implies
(1− µ)p(fxn, fxn+1) ≤ (λ+ µ) p(fxn−1, fxn),

that is,
p(fxn, fxn+1) ≤

(λ+ µ

1− µ

)
p(fxn−1, fxn)

or
p(fxn, fxn+1) ≤ t′ p(fxn−1, fxn), (13)

where t′ =
(
λ+µ
1−µ

)
< 1 since by hypothesis 0 ≤ λ+ 2µ < 1.
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Let q = max{t, t′} < 1. Then from above two cases, we obtain
p(fxn, fxn+1) ≤ q p(fxn−1, fxn), (14)

where q = λ+ 2µ < 1.
Let Hn = p(fxn, fxn+1). Then from (14), we obtain

Hn ≤ qHn−1 ≤ q2Hn−2 ≤ · · · ≤ qnH0.

Now we show that {fxn} is a Cauchy sequence in X. Let m,n > 0 with
m > n. Then
p(fxn, fxm) ≤ p(fxn, fxn+1) + p(fxn+1, fxn+2) + · · ·+ p(fxn+m−1, fxm)

− p(fxn+1, fxn+1)− p(fxn+2, fxn+2)

− · · · − p(fxn+m−1, fxn+m−1)

≤ qnp(fx0, fx1) + qn+1p(fx0, fx1) + · · ·+ qn+m−1p(fx0, fx1)

= qn[p(fx0, fx1) + qp(fx0, fx1) + · · ·+ qm−1p(fx0, fx1)]

= qn[1 + q + · · ·+ qm−1]H0

≤ qn
(1− qm−1

1− q

)
H0.

Taking n,m → ∞ in the above inequality, we get p(fxn, fxm) → 0 since 0 <
q < 1, and hence {fxn} is a Cauchy sequence in X. Thus by Lemma 1.7 this
sequence also Cauchy in (X, ds). In addition, since (X, p) is complete, (X, ds)
is also complete. Thus there exists x ∈ X such that xn → x, it implies that
fxn → fx as n→ ∞, since f(X) is a complete subspace of X.

Moreover by Lemma 1.8
p(fx, fx) = lim

n→∞
p(fx, fxn) = lim

n,m→∞
p(fxn, fxm) = 0, (15)

implies
lim
n→∞

ds(fx, fxn) = 0. (16)

Now, we show that x is a coincidence point of T and f . Notice that due to
(15), we have p(fx, fx) = 0. Note that,
p(fx, Tx) ≤ p(fx, fxn+1) + p(fxn+1, Tx)− p(fxn+1, fxn+1)

= p(fx, fxn+1) + p(Txn, Tx)− p(fxn+1, fxn+1)

≤ p(fx, fxn+1) + λ max{p(fxn, fx), p(fxn, Txn), p(fx, Tx)}
+µ [p(fxn, Tx) + p(fx, Txn)]− p(fxn+1, fxn+1)

≤ p(fx, fxn+1) + λ max{p(fxn, fx), p(fxn, fxn+1), p(fx, Tx)}
+µ [p(fxn, Tx) + p(fx, fxn+1)]. (17)

Taking n→ ∞ in equation (17) and using (15) and Lemma 1.8, we obtain
p(fx, Tx) ≤ λ p(fx, Tx) + µ p(fx, Tx)

= (λ+ µ) p(fx, Tx),
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which implies
(1− λ− µ)p(fx, Tx) ≤ 0.

Hence we have, p(fx, Tx) = 0, and hence fx = Tx. This shows that x is a
coincidence point of T and f . This completes the proof. □

Remark 2.1. If we take f = I, the identity map and T is the single valued
map in Theorem 2.7, then we get Theorem 2.1 of this paper.

Theorem 2.8. Let T and f be two self-maps on a complete partial metric space
X satisfying the inequality (10), where λ, µ ≥ 0 are as in Theorem 2.7. If the
range of f contains the range of T and f(X) is a complete subspace of X, then
T and f have at most a unique point of coincidence.

Proof. Let v1, v2 ∈ X be such that v1 = Tw1 = fw1 and v2 = Tw2 = fw2 for
some w1, w2 ∈ X. Using (10), (15) and (P3), we obtain that

p(v1, v2) ≤ p(Tw1, Tw2)

≤ λ max{p(fw1, fw2), p(fw1, Tw1), p(fw2, Tw2)}
+µ [p(fw1, Tw2) + p(fw2, Tw1)]

= λ max{p(v1, v2), p(v1, v1), p(v2, v2)}
+µ [p(v1, v2) + p(v2, v1)]

= λ max{p(v1, v2), 0, 0}+ 2µ p(v1, v2)

= λ p(v1, v2) + 2µ p(v1, v2) = (λ+ 2µ)p(v1, v2)

< p(v1, v2),

which is a a contradiction. Hence p(v1, v2) = 0, that is, v1 = v2. This completes
the proof. □

2.3. Common fixed point theorems.

Theorem 2.9. Let S and T be two self-maps on a complete partial metric space
X satisfying the inequality

p(Sx, Ty) ≤ λ max{p(x, y), p(x, Sx), p(y, Ty)}
+µ [p(x, Ty) + p(y, Sx)], (18)

for all x, y ∈ X, where λ, µ ≥ 0 are constants such that 0 ≤ λ + 2µ < 1. Then
S and T have a unique common fixed point in X.

Proof. For each x0 ∈ X. Put x2n+1 = Tx2n and x2n+2 = Sx2n+1 for n =
0, 1, 2, . . . . We prove that {xn} is a Cauchy sequence in (X, p). It follows from
(18) that

p(x2n, x2n+1)

= p(Sx2n−1, Tx2n)

≤ λ max{p(x2n−1, x2n), p(x2n−1, Sx2n−1), p(x2n, Tx2n)}



Coincidence point and fixed point theorems in partial metric spaces 1063

+ µ [p(x2n−1, Tx2n) + p(x2n, Sx2n−1)]

≤ λ max{p(x2n−1, x2n), p(x2n−1, x2n), p(x2n, x2n+1)}
+ µ [p(x2n−1, x2n+1) + p(x2n, x2n)]

≤ λ max{p(x2n−1, x2n), p(x2n−1, x2n), p(x2n, x2n+1)}
+ µ [p(x2n−1, x2n) + p(x2n, x2n+1)− p(x2n, x2n) + p(x2n, x2n)]

= λ max{p(x2n−1, x2n), p(x2n−1, x2n), p(x2n, x2n+1)}
+ µ [p(x2n−1, x2n) + p(x2n, x2n+1)]

= λ max{p(x2n−1, x2n), p(x2n, x2n+1)}
+ µ [p(x2n−1, x2n) + p(x2n, x2n+1)]. (19)

By similar arguments as in Theorem 2.1, we obtain
p(x2n, x2n+1) ≤ q p(x2n−1, x2n), (20)

where q = max{t, t′} < 1, t =
(

µ
1−λ−µ

)
, t′ =

(
λ+µ
1−µ

)
and 0 ≤ q = λ+ 2µ < 1.

Let U2n = p(x2n, x2n+1). Then from (20), we obtain
U2n ≤ qU2n−1 ≤ q2U2n−2 ≤ · · · ≤ q2nU0.

For n,m ∈ N with m > n, by repeated use of (P4), we have that
p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xn+m−1, xm)

− p(xn+1, xn+1)− p(xn+2, xn+2)− · · · − p(xn+m−1, xn+m−1)

≤ p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xn+m−1, xm)

≤ qn[1 + q + q2 + · · ·+ qm−1]U0

≤ qn
(1− qm−1

1− q

)
U0.

Taking n,m→ ∞ in the above inequality, we get p(xn, xm) → 0 since 0 < q < 1,
and hence {xn} is a Cauchy sequence in X. Thus by Lemma 1.7 this sequence
also Cauchy in (X, ds). In addition, since (X, p) is complete, (X, ds) is also
complete. Thus there exists v ∈ X such that xn → v as n → ∞. Moreover by
Lemma 1.8,

p(v, v) = lim
n→∞

p(v, xn) = lim
n,m→∞

p(xn, xm) = 0, (21)

implies
lim
n→∞

ds(v, xn) = 0. (22)

Now, we show that v is a common fixed point of S and T . Notice that due
to (21), we have p(v, v) = 0. Note that,

p(v, Tv) ≤ p(v, x2n+2) + p(x2n+2, T v)− p(x2n+2, x2n+2)

= p(v, x2n+2) + p(Sx2n+1, T v)− p(x2n+2, x2n+2)

≤ p(v, x2n+2) + p(Sx2n+1, T v)
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≤ p(v, x2n+2) + λmax{p(x2n+1, v), p(x2n+1, Sx2n+1), p(v, Tv)}
+ µ [p(x2n+1, T v) + p(v, Sx2n+1)]

= p(v, x2n+2) + λ max{p(x2n+1, v), p(x2n+1, x2n+2), p(v, Tv)}
+ µ [p(x2n+1, T v) + p(v, x2n+2)]. (23)

Taking n → ∞ in equation (23) and using equation (21) and Lemma 1.8, we
obtain

p(v, Tv) ≤ λ p(v, Tv) + µ p(v, Tv)

= (λ+ µ)p(v, Tv),

which implies
(1− λ− µ)p(v, Tv) ≤ 0.

Hence, we have p(v, Tv) = 0 and v = Tv. This shows that v is a fixed point of
T .

Similarly, we can show that v = Sv. Thus v is a common fixed point of S and
T . The uniqueness of the common fixed point of S and T follows from Theorem
2.1. This completes the proof. □

If we take max
{
p(x, y), p(x, Sx), p(y, Ty)

}
= p(x, y) and µ = 0 in Theorem

2.9, then we have the following result.

Corollary 2.10. ([11], Corollary 3.4) Let S and T be two self-maps on a com-
plete partial metric space X satisfying the inequality

p(Sx, Ty) ≤ λ p(x, y), (24)
for all x, y ∈ X, where λ ∈ [0, 1) is a constant. Then S and T have a unique
common fixed point in X.

Remark 2.2. ([11]) The above Corollary 2.10 can not be deduced from similar
result of metric spaces. Actually the contractive condition (24) for a pair of
mappings S, T : X → X on a metric space (X, d), that is,

d(Sx, Ty) ≤ λ d(x, y),

for all x, y ∈ X, is not attainable. Because S ̸= T implies that Su ̸= Tu for
some u ∈ X, then d(Su, Tu) > 0 = λ d(u, u).

Condition (24) is not satisfied for x = y = u. However the same condition in
partial metric space is feasible to find common fixed point result for a pair of
mappings. This fact can be seen again in Example 3.6.

3. Illustrations

Example 3.1. Let X = [0, 1]. Define p : X ×X → R+ as p(x, y) = max{x, y}
with T : X → X by T (x) = x

2 . Then, clearly (X, p) is a partial metric space.
Now, let x ≤ y. Then choose x = 1

2 and y = 1, we have p(Tx, Ty) = y
2 ,
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p(x, y) = y, p(x, Tx) = x, p(y, Ty) = y, p(x, Ty) = y
2 , p(y, Tx) = y and

max{p(x, y), p(x, Tx), p(y, Ty)} = max{y, x, y} = y. Now, we consider

p(Tx, Ty) =
y

2
≤ λ y + µ

(y
2
+ y
)

or
1

2
≤ λ+

3

2
µ. (25)

Then we know that:
(1) Inequality (25) satisfied for (i) λ = 3

4 and µ = 0 (ii) λ = 1
2 and µ = 1

6

(iii) λ = 0 and µ = 1
3 . Thus T satisfies the conditions of Theorem 2.1.

Hence T has a unique fixed point. It is seen that 0 is the unique fixed
point of T . Therefore the sequence {Tnx} = { x

2n } converges to the fixed
point z = 0 of the operator T for every x ∈ X

(2) If λ = 3
4 and µ = 0, then T satisfies the conditions of Corollary 2.3.

Hence, by applying Corollary 2.3, the operator T has a unique fixed
point 0 ∈ X.

(3) If µ = 1
3 and λ = 0, then T satisfies the conditions of Corollary 2.4.

Hence, by applying Corollary 2.4, the operator T has a unique fixed
point 0 ∈ X.

(4)

p(Tx, Ty) =
y

2
≤ λ max

{
y, x, y,

1

2
(
y

2
+ y)

}
= λ y

or

λ ≥ 1

2
.

If we take 0 < λ < 1, then all the conditions of Corollary 2.5 are satisfied.
Hence, by applying Corollary 2.5, T has a unique fixed point 0 ∈ X.

Example 3.2. Let X = [0, 1] be endowed with the partial metric p(x, y) =
max{x, y} for all x, y ∈ X. Then (X, p) is a 0-complete partial metric space.
Define the mapping T : X → X by

T (x) =

{
0, if x ∈ [0, 12 ],
1
2 , otherwise x ∈ ( 12 , 1].

Then, we distinguish the following cases.
Case 1. If x, y ∈ [0, 12 ] with x ≤ y, then we have p(Tx, Ty) = 0, p(x, y) =

y, p(x, Tx) = p(x, 0) = x, p(y, Ty) = p(y, 0) = y, p(x, Ty) = p(x, 0) = x,
p(y, Tx) = p(y, 0) = y and max{p(x, y), p(x, Tx), p(y, Ty)} = max{y, x, y} = y.
And also, we have

p(Tx, Ty) = 0 ≤ λ y + µ (x+ y) = µx+ (λ+ µ) y,

where λ, µ ≥ 0. Thus the inequality (1) of Theorem 2.1 is satisfied and 0(∈ X)
is the unique fixed point of T .
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Case 2. If x ∈ [0, 12 ], y ∈ ( 12 , 1] with x ≤ y, then we have p(Tx, Ty) = 1
2 ,

p(x, y) = y, p(x, Tx) = p(x, 0) = x, p(y, Ty) = p(y, 1/2) = y, p(x, Ty) =
p(x, 1/2) = x, p(y, Tx) = p(y, 0) = y and max{p(x, y), p(x, Tx), p(y, Ty)} =
max{y, x, y} = y. And also, we have

p(Tx, Ty) =
1

2
≤ λ · 1 + µ (1 + y) = µ y + (λ+ µ),

where λ, µ ≥ 0 with λ + 2µ < 1. Thus the inequality (1) of Theorem 2.1 is
satisfied and 0(∈ X) is the unique fixed point of T .

Case 3. If x, y ∈ ( 12 , 1] with x ≤ y, then we have p(Tx, Ty) = 1
2 , p(x, y) = y,

p(x, Tx) = p(x, 1/2) = x, p(y, Ty) = p(y, 1/2) = y, p(x, Ty) = p(x, 12 ) = x,
p(y, Tx) = p(y, 12 ) = y and max{p(x, y), p(x, Tx), p(y, Ty)} = max{y, x, y} = y.
And also, we have

p(Tx, Ty) =
1

2
≤ λ y + µ (x+ y) = µx+ (λ+ µ)y.

Putting x = 1
2 and y = 1 in the above inequality, we get

1

2
≤ λ+

3

2
µ.

The above inequality is satisfied for (i) λ = 0 and µ = 1/3 (ii) λ = 1/2 and
µ = 0 and (iii) λ = 1/3 and µ = 1/6 with λ+ 2µ < 1. Hence the inequality (1)
of Theorem 2.1 is satisfied and 0(∈ X) is the unique fixed point of T .

Thus in all the above cases inequality (1) of Theorem 2.1 is satisfied and
0(∈ X) is the unique fixed point of T .

Example 3.3. Let X = {0, 1, 2, 3, . . . }. Define p : X × X → R+ as p(x, y) =
max{x, y}. Let T, f : X → X be defined respectively as follows: f(x) = x for all
x ∈ X and

T (x) =

{
x− 1, if x ̸= 0,
0, if x = 0.

Then (X, p) is a partial metric space. Now, let x ≤ y. Then choose x = 1
2 and

y = 1, we have p(Tx, Ty) = y − 1, p(fx, fy) = y, p(fx, Tx) = x, p(fy, Ty) = y,
p(fx, Ty) = x, p(fy, Tx) = y and max{p(fx, fy), p(fx, Tx),
p(fy, Ty)} = max

{
y, x, y

}
= y. Now, we consider

p(Tx, Ty) = y − 1 ≤ λ y + µ (x+ y),

putting x = 1
2 and y = 1 in the above inequality, we get

0 ≤ λ+
3

2
µ.

The above inequality is satisfied for all λ, µ ≥ 0 with λ+2µ < 1. Then T and f
have the properties mentioned in Theorem 2.7. Hence the conditions of Theorem
2.7 are satisfied. Therefore it is seen that 0 is the unique point of coincidence,
that is, f(x) = 0 = T (x).
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Example 3.4. Let X = {1, 2, 3, 4} and p : X ×X → R be defined by

p(x, y) =

 |x− y|+max{x, y}, if x ̸= y,
x, if x = y ̸= 1,
0, if x = y = 1,

for all x, y ∈ X. Then (X, p) is a complete partial metric space.
Define the mapping T : X → X by

T (1) = 1, T (2) = 1, T (3) = 2, T (4) = 2.

Then, we have

p(T (1), T (2)) = p(1, 1) = 0 ≤ 3

4
· 3 =

3

4
p(1, 2),

p(T (1), T (3)) = p(1, 2) = 3 ≤ 3

4
· 5 =

3

4
p(1, 3),

p(T (1), T (4)) = p(1, 2) = 3 ≤ 3

4
· 7 =

3

4
p(1, 4),

p(T (2), T (3)) = p(1, 2) = 3 ≤ 3

4
· 4 =

3

4
p(2, 3),

p(T (2), T (4)) = p(1, 2) = 3 ≤ 3

4
· 6 =

3

4
p(2, 4),

p(T (3), T (4)) = p(2, 2) = 2 ≤ 3

4
· 5 =

3

4
p(3, 4).

Thus, T satisfies all the conditions of Corollary 2.3 with λ = 3
4 < 1. Now by

Corollary 2.3, T has a unique fixed point, which in this case is 1.

Example 3.5. Let X = [0, 1]. Define p : X ×X → R+ as p(x, y) = max{x, y}
and let S, T : X → X be defined respectively by S(x) = x

2 and T (x) = 0 for
all x ∈ X. Then (X, p) is a partial metric space. Now, let x ≤ y. Then
choose x = 1

2 and y = 1, we have p(Sx, Ty) = x
2 , p(x, y) = y, p(x, Sx) = x,

p(y, Ty) = y, p(x, Ty) = x, p(y, Sx) = y and max{p(x, y), p(x, Sx), p(y, Ty)} =
max

{
y, x, y

}
= y. Now, we consider

p(Sx, Ty) =
x

2
≤ λ y + µ (x+ y),

putting x = 1
2 and y = 1 in the above inequality, we get

1

4
≤ λ+

3

2
µ.

Then the above inequality is satisfied for (i) λ = 0 and µ = 1/6 (ii) λ = 1/4
and µ = 0, (iii) λ = 1/3 and µ = 1/6 and (iv) λ = 1/5 and µ = 1/10 with
λ+ 2µ < 1. Thus S and T satisfy all the conditions of Theorem 2.9. Hence by
applying Theorem 2.9, S and T have a unique common fixed point 0(∈ X) of S
and T .
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Example 3.6. ([11]) Let X = [0, 1]. Define p : X × X → R+ as p(x, y) =
max{x, y} and let S, T : X → X be defined by S(x) = x

8 and T (x) = 3x
8 . Then

clearly (X, p) is a partial metric space. Now, let x ≤ y. Then, we have

p(Sx, Ty) = max
{x
8
,
3y

8

}
=

1

8
max{x, 3y}

and
p(Sx, Ty) =

1

8
max{x, 3y} ≤ 5

11
max{x, y} = λ p(x, y).

Therefore, for λ = 5
11 all the conditions of Corollary 2.10 are satisfied to find

common fixed point of S and T . However, note that for any metric d on X

d(S(1), T (1)) = d
(1
8
,
3

8

)
> λd(1, 1) = 0 for any λ ∈ [0, 1).

Therefore common fixed points of S and T can not be obtained from a corre-
sponding metric fixed point theorem.

4. Applications

As an application of our results, we introduce some fixed point theorems of
integral type.

Denote Φ the set of functions ϕ : [0,+∞) → [0,+∞) satisfying the following
hypothesis:
(H1) ϕ is a Lebesgue-integrable mapping on each compact subset of [0,+∞);
(H2) for any ε > 0 we have

∫ ε
0
ϕ(s)ds > 0.

Corollary 4.1. Let (X, p) be a complete partial metric space. Let T : X → X
be a mapping satisfying the following inequality:∫ p(Tx,Ty)

0

ψ(s)ds ≤ λ

∫ max

{
p(x,y),p(x,Tx),p(y,Ty)

}
0

ψ(s)ds

+µ

∫ [p(x,Ty)+p(y,Tx)]

0

ψ(s)ds

for all x, y ∈ X, where λ, µ ≥ 0 are constants such that 0 ≤ λ + 2µ < 1 and
ψ ∈ Φ. Then T has a unique fixed point in X.

Proof. Follows from Theorem 2.1 by taking

t =

∫ t

0

ψ(s)ds.

□

Corollary 4.2. Let (X, p) be a complete partial metric space. Let S, T : X → X
be two mappings satisfying the following inequality:∫ p(Sx,Ty)

0

ψ(s)ds ≤ λ

∫ max

{
p(x,y),p(x,Sx),p(y,Ty)

}
0

ψ(s)ds
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+µ

∫ [p(x,Ty)+p(y,Sx)]

0

ψ(s)ds

for all x, y ∈ X, where λ, µ ≥ 0 are constants such that 0 ≤ λ + 2µ < 1 and
ψ ∈ Φ. Then S and T have a unique common fixed point in X.

Proof. Follows from Theorem 2.1 by taking

t =

∫ t

0

ψ(s)ds.

□

If we take λ = 0 in Corollary 4.1, then we obtain the following result due to
Chatterjae [7].

Corollary 4.3. Let (X, p) be a complete partial metric space. Let T : X → X
be a mapping satisfying the following inequality:∫ p(Tx,Ty)

0

ψ(s)ds ≤ µ

∫ [p(x,Ty)+p(y,Tx)]

0

ψ(s)ds

for all x, y ∈ X, where µ ∈ [0, 12 ) is a constant and ψ ∈ Φ. Then T has a unique
fixed point in X.

Remark 4.1. Corollary 4.3 extends the corresponding result of Chatterjae [7]
from complete metric space to the setting of complete partial metric space for
integral type contractive condition.

If we take µ = 0 and max
{
p(x, y), p(x, Tx), p(y, Ty)

}
= p(x, y) in Corollary

4.1, then we obtain the following result due to Branciari [6].

Corollary 4.4. Let (X, p) be a complete partial metric space. Let T : X → X
be a mapping satisfying the following inequality:∫ p(Tx,Ty)

0

ψ(s)ds ≤ λ

∫ p(x,y)

0

ψ(s)ds

for all x, y ∈ X, where λ ∈ [0, 1) is a constant and ψ ∈ Φ. Then T has a unique
fixed point in X.

Remark 4.2. Corollary 4.4 extends Theorem 2.1 of Branciari [6] from complete
metric space to the setting of complete partial metric space.

5. Conclusion

In this article, we establish some fixed point theorems, a common fixed point
theorem and a coincidence point theorem in the setting of complete partial metric
spaces and we obtain the well-known Banach contraction principle and Chat-
terjae contraction as corollaries to our results. Also we support our results by
some examples and give some applications to our results.
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