DOI QR코드

DOI QR Code

KUMMER-TYPE CONGRUENCES FOR THE HIGHER ORDER EULER NUMBERS AND POLYNOMIALS

  • KIM, MIN-SOO (Department of Mathematics Education, Kyungnam University)
  • Received : 2022.04.20
  • Accepted : 2022.07.15
  • Published : 2022.09.30

Abstract

In this paper, by using the multiple fermionic p-adic integrals, we obtain Kummer-type congruences for the higher order Euler numbers and polynomials.

Keywords

Acknowledgement

The author would like to thank Prof. Su Hu for his helpful comments and suggestions.

References

  1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Reprint of the 1972 edition, Dover Publications, Inc., New York, 1992.
  2. A.T. Benjamin, J. Lentfer and T.C. Martinez, Counting on Euler and Bernoulli number identities, Fibonacci Quart. 58 (2020), 30-33.
  3. A.T. Benjamin and J.J. Quinn, An alternate approach to alternating sums: a method to DIE for, College Math. J. 39 (2008), 191-201. https://doi.org/10.1080/07468342.2008.11922293
  4. K.-W. Chen, Congruences for Euler numbers, Fibonacci Quart. 42 (2004), 128-140.
  5. J. Choi and H.M. Srivastava, The multiple Hurwitz zeta function and the multiple HurwitzEuler eta function, Taiwanese J. Math. 15 (2011), 501-522. https://doi.org/10.11650/twjm/1500406218
  6. M. Eie and Y.L. Ong, A generalization of Kummer's congruences, Abh. Math. Sem. Univ. Hamburg 67 (1997), 149-157. https://doi.org/10.1007/BF02940825
  7. R.C. Entringer, A Combinatorial Interpretation of the Euler and Bernoulli Numbers, Nieuw Arch. Wiskd. 14 (1966), 241-246.
  8. Y. He, and Q. Liao, Some congruences involving Euler numbers, Fibonacci Quart. 46/47 (2008), 225-234.
  9. N.M. Katz, p-adic L-functions via moduli of elliptic curves, Algebraic geometry, Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974, pp. 479-506, Amer. Math. Soc., Providence, R. I., 1975.
  10. T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on Zp at q = -1, J. Math. Anal. Appl. 331 (2007), 779-792. https://doi.org/10.1016/j.jmaa.2006.09.027
  11. M.-S. Kim and J.-W. Son, On a multidimensional Volkenborn integral and higher order Bernoulli numbers, Bull. Austral. Math. Soc. 65 (2002), 59-71. https://doi.org/10.1017/S0004972700020062
  12. M.-S. Kim and S. Hu, On p-adic Hurwitz-type Euler zeta functions, J. Number Theory 132 (2012), 2977-3015. https://doi.org/10.1016/j.jnt.2012.05.037
  13. N. Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, Second edition, Graduate Texts in Mathematics, 58, Springer-Verlag, New York, 1984.
  14. T. Kubota und H.W. Leopoldt, Eine p-adische Theorie der Zetawerte. I. Einfuhrung der p-adischen Dirichletschen L-Funktionen, J. Reine Angew. Math. 214/215 (1964), 328-339. https://doi.org/10.1515/crll.1964.214-215.328
  15. E.E. Kummer, uber eine allgemeine Eigenschaft der rationalen Entwickelungscoeficienten einer bestimmten Gattung analytischer Funktionen, J. Reine Angew. Math. 41 (1851), 368-372.
  16. S. Lang, Cyclotomic Fields I and II, Combined 2nd ed., Springer-Verlag, New York, 1990.
  17. G. Liu, Identities and congruences involving higher-order Euler-Bernoulli numbers and polynomials, Fibonacci Quart. 39 (2001), 279-284.
  18. G. Liu, Congruences for higher-order Euler numbers, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), 30-33. https://doi.org/10.3792/pjaa.82.30
  19. H. Liu and W. Wang, Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums, Discrete Math. 309 (2009), 3346-3363. https://doi.org/10.1016/j.disc.2008.09.048
  20. H. Maiga, Some identities and congruences concerning Euler numbers and polynomials, J. Number Theory 130 (2010), 1590-1601. https://doi.org/10.1016/j.jnt.2010.01.019
  21. H. Maiga, New identities and congruences for Euler numbers, Advances in nonArchimedean analysis, 139-158, Contemp. Math., 665, Amer. Math. Soc., Providence, RI, 2016.
  22. N.E. Norlund, Vorlesungen uber Differenzenrechnung, Springer-Verlag, Berlin, 1924; Reprinted byChelsea, Bronx, New York, 1954.
  23. Ju.V. Osipov, p-adic zeta functions, Uspekhi Mat. Nauk 34 (1979), 209-210.
  24. J.L. Raabe, Zuruckfuhrung einiger Summen und bestmmtiem Integrale auf die JacobBernoullische Function, J. Reine Angew. Math. 42 (1851), 348-367.
  25. C.S. Ryoo, On the (p, q)-analogue of Euler zeta function, J. Appl. Math. Inform. 35 (2017), 303-311. https://doi.org/10.14317/JAMI.2017.303
  26. C.S. Ryoo, Some properties of degenerate Carlitz-type twisted q-Euler numbers and polynomials, J. Appl. Math. Inform. 39 (2021), 1-11. https://doi.org/10.14317/JAMI.2021.001
  27. K. Shiratani and S. Yamamoto, On a p-adic interpolation function for the Euler numbers and its derivatives, Mem. Fac. Sci. Kyushu Univ. Ser. A 39 (1985), 113-125.
  28. Y. Simsek, Complete sum of products of (h, q)-extension of Euler polynomials and numbers, J. Difference Equ. Appl. 16 (2010), 1331-1348. https://doi.org/10.1080/10236190902813967
  29. Z.-W. Sun, Introduction to Bernoulli and Euler polynomials, A Lecture Given in Taiwan on June 6, 2002. http://maths.nju.edu.cn/ zwsun/BerE.pdf
  30. B.A. Tangedal and P.T. Young, On p-adic multiple zeta and log gamma functions, J. Number Theory 131 (2011), 1240-1257. https://doi.org/10.1016/j.jnt.2011.01.010