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Abstract. In this paper, by using the multiple fermionic p-adic integrals,
we obtain Kummer-type congruences for the higher order Euler numbers
and polynomials.
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1. Introduction

Euler numbers, denoted by Em for m ≥ 0, count the number of odd alternat-
ing permutations of a set with an even number of elements. They are related
to the Bernoulli numbers. The odd-indexed Euler numbers are all zero since its
generating function is even (see [1, 2, 3, 7, 29]). The Euler numbers Em satisfy
the following recurrence relation (cf. [29, (1.2)])

E0 = 1, (E + 1)m + (E − 1)m = 0, m ≥ 1. (1)

From this, by the induction we can also conclude that the odd-indexed Euler
numbers are all zero and all the Euler numbers E0, E2, . . . are integers.

Let ℓ be a positive integer. Recently, Liu [18] introduced the higher order
Euler numbers and gave some applications related to them. It is known [17, 18]
that the higher order Euler numbers are defined by the following generating
function

eE
(ℓ)t ≡

∞∑
m=0

(E(ℓ)t)m

m!
≡

∞∑
m=0

E(ℓ)
m

tm

m!
=

(
2

et + e−t

)ℓ
, (2)
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where the symbol ≡ is used to denote symbolic or umbral equivalences under-
stand as (E(ℓ))m ≡ E

(ℓ)
m . From the multinomial theorem, we have

∞∑
m=0

E(ℓ)
m

tm

m!
=

∞∑
m=0

 ∑
j1+···+jℓ=m
j1,...,jℓ≥0

(
m

j1, . . . , jℓ

)
Ej1 · · ·Ejℓ

 tm

m!
. (3)

By (3), we see that the higher order Euler numbers are linked with the ordinary
Euler numbers by the following identity

E(ℓ)
m =

∑
j1+···+jℓ=m
j1,...,jℓ≥0

(
m

j1, . . . , jℓ

)
Ej1 · · ·Ejℓ , m ≥ 0. (4)

It is seen from (1) and (4) that the higher order Euler numbers E(ℓ)
m are integers.

These numbers satisfy the following recurrence formula
ℓ∑
j=0

(
ℓ

j

)
(E(ℓ) + 2j − ℓ)m =

{
2ℓ, m = 0,

0, m ≥ 1,
(5)

in which we understand that the expression on the left is expanded in powers
of E(ℓ), and each terms (E(ℓ))m is replaced by E

(ℓ)
m . The higher order Euler

polynomials E(ℓ)
m (x) satisfy the following generating function

eE
(ℓ)(x)t ≡

∞∑
m=0

(E(ℓ)(x)t)m

m!
≡

∞∑
m=0

E(ℓ)
m (x)

tm

m!
=

(
2

et + 1

)ℓ
ext, (6)

in which, the symbol ≡ is used to denote symbolic or umbral equivalences. It
has been appeared in [5, (3.15)], [17, (8)] and [22, (78)]. Moreover, the rela-
tion E

(ℓ)
m = 2mE

(ℓ)
m

(
ℓ
2

)
follows by setting x = ℓ

2 in (6), replacing t by 2t and
then comparing with (2). From (6), it is easy to verify that E(ℓ)

m (x + y) =∑m
k=0

(
m
k

)
E

(ℓ)
k (x)ym−k. Note that we have E(0)

m (x) = xm.

It is also easy to see that (d/dx)E(ℓ)
m (x) = mE

(ℓ)
m−1(x) for m > 0. From (2)

and (6), we have the following the identity(
2

et + 1

)ℓ
ext =

(
2

et/2 + e−t/2

)ℓ
e(x−ℓ/2)t. (7)

It implies the Taylor expansion of E(ℓ)
m (x) around x = ℓ/2 (cf. [24]):

E(ℓ)
m (x) =

m∑
k=0

(
m

k

)
E

(ℓ)
k

2k

(
x− ℓ

2

)m−k

, (8)

which holds for all nonnegative integers m and all real x. Clearly, the classical
Euler polynomials and numbers are given by

Em(x) := E(1)
m (x) and Em := E(1)

m = 2mEm

(
1

2

)
, (9)
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respectively (cf. [29]). From the generating function (6) we have Em(0) = 0 if
m is even. Therefore, Em 6= Em(0); in fact

Em(0) = −Em(1) =
2

m+ 1
(1− 2m+1)Bm+1, m ≥ 0, (10)

here we recall that the Bernoulli numbers Bm are defined by the generating
function

eBt ≡
∞∑
m=0

(Bt)m

m!
≡

∞∑
m=0

Bm
tm

m!
=

t

et − 1
. (11)

We also mention that the Bernoulli polynomials Bm(x) are defined by Bm(x) =∑m
k=0

(
m
k

)
xm−kBk.

Recently, the higher order Euler numbers and polynomials have been investi-
gated by many experts from different viewpoints such as number theory, math-
ematical analysis and statistics (see [2, 11, 25, 26, 28]). In [4], Chen obtained
many interesting congruences related to Euler polynomials En(x) by using the
results of Eie and Ong [6]. Recently, the congruences for higher order Euler
numbers have been further investigated by Liu [17, 18].

The main aim of this paper is to prove Kummer-type congruences for the
higher order Euler numbers and polynomials by using the multiple fermionic
p-adic integrals.

2. Higher order Euler numbers, polynomials and multiple
Hurwitz-Euler eta functions

In this section, we shall introduce the higher order Euler numbers and poly-
nomials, the multiple Hurwitz-Euler eta functions and analyze their elementary
properties and relations.

For q ≥ 1, we write(
2et

e2t + 1

)ℓ (
1− (−e2t)q

)ℓ
= (2et)ℓ

(
1− (−e2t)q

1− (−e2t)

)ℓ
= 2ℓ

q−1∑
j1,...,jℓ=0

(−1)j1+···+jℓe(2(j1+···+jℓ)+ℓ)t.

(12)

On the other hand, by using the binomial theorem and (2), we have(
2et

e2t + 1

)ℓ (
1− (−e2t)q

)ℓ
= eE

(ℓ)t
ℓ∑
j=0

(
ℓ

j

)
(−1)(q+1)je(2qj)t

=

ℓ∑
j=0

(
ℓ

j

)
(−1)(q+1)je(E

(ℓ)+2qj)t.

(13)

Comparing the coefficients of tm in the Taylor expansion around 0 for the right-
hand sides of (12) and (13), we get the following proposition.
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Proposition 2.1. Let ℓ and q be positive integers. For any non-negative integer
m, we have
ℓ∑
j=0

(
ℓ

j

)
(−1)(q+1)j

(
E(ℓ) + 2qj

)m
= 2ℓ

q−1∑
j1,...,jℓ=0

(−1)j1+···+jℓ(2(j1+· · ·+jℓ)+ℓ)m

with the usual convention of replacing (E(ℓ))i by E(ℓ)
i .

Remark 2.1. Letting ℓ = 1 in Proposition 2.1, we have

Em + (−1)q+1
m∑
j=0

(
m

j

)
(2q)m−jEj = 2

q−1∑
j=0

(−1)j(2j + 1)m. (14)

This identity is due to Maïga [21, Proposition 2.3].

Lemma 2.2. Let q be an odd integer with q ≥ 1. Then for any non-negative
integer m, we have

E(ℓ)
m ≡

q−1∑
j1,...,jℓ=0

(−1)j1+···+jℓ(2(j1 + · · ·+ jℓ) + ℓ)m (mod q).

Proof. For m ≥ 0 we have(
E(ℓ) + 2qj

)m
=

m∑
k=0

(
m

k

)
E

(ℓ)
m−k(2qj)

k.

For an odd integer q ≥ 1, the left hand side of Proposition 2.1 implies
ℓ∑
j=0

(
ℓ

j

) m∑
k=0

(
m

k

)
E

(ℓ)
m−k(2qj)

k ≡ 2ℓE(ℓ)
m (mod q), (15)

since
∑ℓ
j=0

(
ℓ
j

)
= 2ℓ. Therefore, by Proposition 2.1 and (15) we obtain the

assertion. □

Letting ℓ = 1 in the above lemma, we immediately get the following result.

Corollary 2.3 ([8, Lemma 2.5]). Let q be an odd integer with q ≥ 1. Then for
any non-negative integer m, we have

Em ≡
q−1∑
j=0

(−1)j(2j + 1)m (mod q).

Theorem 2.4. Let m be a positive integer and p an odd prime. We have

E
(ℓ)
(p−1)+2m ≡ E

(ℓ)
2m (mod p).

Proof. By Lemma 2.2, we have

E
(ℓ)
2m ≡

p−1∑
j1,...,jℓ=0

(−1)j1+···+jℓ(2(j1 + · · ·+ jℓ) + ℓ)2m (mod p)
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and

E
(ℓ)
(p−1)+2m ≡

p−1∑
j1,...,jℓ=0

(−1)j1+···+jℓ(2(j1 + · · ·+ jℓ) + ℓ)(p−1)+2m (mod p).

Then by Fermat’s Little Theorem we get

E
(ℓ)
(p−1)+2m ≡

p−1∑
j1,...,jℓ=0

(−1)j1+···+jℓ(2(j1 + · · ·+ jℓ) + ℓ)2m ≡ E
(ℓ)
2m (mod p),

which completes the proof of Theorem 2.4. □

Putting ℓ = 1 in Theorem 2.4 we immediately get the following result.

Corollary 2.5 ([8, Theorem 3.2]). Let m be a positive integer and p an odd
prime. We have

E(p−1)+2m ≡ E2m (mod p).

The following is the definition for multiple Hurwitz-Euler eta functions.

Definition 2.6 ([5, p. 314, (3.3)]). For x > 0 and ℓ ≥ 1, the multiple Hurwitz-
Euler eta function ηℓ(s, x) is defined by

ηℓ(s, x) =

∞∑
k1,...,kℓ=0

(−1)k1+···+kℓ

(k1 + · · ·+ kℓ + x)s
, Re(s) > 0. (16)

Here us = es log u and log u = log |u| + i arg u with −π < arg u < π for any
complex number u not on the nonpositive real axis.

In the case of ℓ = 1, it reduces to the Hurwitz-Euler eta function

η(s, x) =

∞∑
k=0

(−1)k

(k + x)s
, Re(s) > 0. (17)

Further setting x = 1 in the above equation, we recover the Dirichlet eta function
(or the alternating Riemann zeta function)

η(s) =

∞∑
k=1

(−1)k−1

ks
, Re(s) > 0. (18)

The analytic continuation and special values of ηℓ(s, x) are implied by the
following contour integral representation of ηℓ(s, x).

Theorem 2.7 ([5, Theorem 4]). The multiple Hurwitz-Euler eta function ηℓ(s, x)
is expressed as a contour integral

ηℓ(s, x) = −Γ(1− s)

2πi

∫
C

(−t)s−1e−xt

(1 + e−t)ℓ
dt,

where 0 < c < π and C is the path from +∞ to c along the real axis, going
along the circle around 0 of radius c counter-clockwise to c, and then going back
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to +∞. This expression gives us the analytic continuation of ηℓ to the whole
complex s-plane, and also for a positive integer m we find that

ηℓ(−m,x) =
(−1)m

2ℓ
E(ℓ)
m (ℓ− x).

In particular, for the Hurwitz-Euler eta function η(s, x), we have η(−m,x) =
(−1)mEm(1− x)/2.

Let p be an odd prime number. We get rid of the terms 1/(k1+ · · ·+ kℓ+x)s
with k1 + · · ·+ kℓ divisible by p in (16) by defining

η̃ℓ(s, x) =

∞∑
k1,...,kℓ=0
p∤(k1+···+kℓ)

(−1)k1+···+kℓ

(k1 + · · ·+ kℓ + x)s
, (19)

for Re(s) > 0 and x > 0. From (19), we have

η̃ℓ(s, x) = ηℓ(s, x)−
∞∑

k1,...,kℓ=0
p|(k1+···+kℓ)

(−1)k1+···+kℓ

(k1 + · · ·+ kℓ + x)s

= ηℓ(s, x)−
p−1∑

j1,...,jℓ=0
j1+···+jℓ≡0 (mod p)

∞∑
k′1,...,k

′
ℓ=0

(−1)j1+pk
′
1+···+jℓ+pk′ℓ

(j1 + pk′1 + · · ·+ jℓ + pk′ℓ + x)s

= ηℓ(s, x)− p−s
p−1∑

j1,...,jℓ=0
j1+···+jℓ≡0 (mod p)

(−1)j1+···+jℓηℓ

(
s,
j1 + · · ·+ jℓ + x

p

)
.

(20)
Since

E(ℓ)
m (x) = (−1)mE(ℓ)

m (ℓ− x), m ≥ 0,

from Theorem 2.7 and (20) we have

1

2ℓ

E(ℓ)
m (x)− pm

p−1∑
j1,...,jℓ=0

j1+···+jℓ≡0 (mod p)

(−1)j1+···+jℓE(ℓ)
m

(
j1 + · · ·+ jℓ + x

p

)
= ηℓ(−m,x)− pm

p−1∑
j1,...,jℓ=0

j1+···+jℓ≡0 (mod p)

(−1)j1+···+jℓηℓ

(
−m, j1 + · · ·+ jℓ + x

p

)

= η̃ℓ(−m,x).
(21)

Thus we get the following proposition.
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Proposition 2.8. Let m ≥ 0 and x > 0. Then
η̃ℓ(−m,x)

=
1

2ℓ

E(ℓ)
m (x)− pm

p−1∑
j1,...,jℓ=0

j1+···+jℓ≡0 (mod p)

(−1)j1+···+jℓE(ℓ)
m

(
j1 + · · ·+ jℓ + x

p

) .

3. Kummer-type congruences for E(ℓ)
m and E

(ℓ)
m (x)

In this section, let p be a fixed odd prime number, let Zp,Qp and Cp be the
ring of p-adic integers, the field of p-adic numbers and the completion of the
algebraic closure of Qp, respectively, let | · |p be the p-adic valuation on Q with
|p|p = p−1. As usual, the extended valuation on Cp is also denoted by the same
symbol | · |p.

Setting
z + pNZp = {x ∈ Qp | |x− z|p ≤ p−N},

where z ∈ Z lies in 0 ≤ z < pN . For any positive integers N , we define
µ−1(z + pNZp) = (−1)z, (22)

which is known as be fermionic p-adic measures on Zp. Let UD(Zp) be the space
of uniformly (or strictly) differentiable function on Zp. Using the fermionic p-adic
measure, we define the fermionic p-adic integral on Zp as follows:∫

Zp
f(z)dµ−1(z) = lim

N→∞

pN−1∑
z=0

f(z)(−1)z, (23)

for f ∈ UD(Zp). The fermionic p-adic integral (23) were independently found by
Katz [9, p. 486] (in Katz’s notation, the µ(2)-measure), Shiratani and Yamamoto
[27], Osipov [23], Lang [16] (in Lang’s notation, the E1,2-measure), T. Kim [10]
from very different viewpoints. Let E be the translation with (Ef)(z) = f(z+1).
The formula (23) reduces to∫

Zp
f(z)dµ−1(z) = 2f(0)−

∫
Zp
(Ef)(z)dµ−1(z). (24)

Let ∫
Zℓp

=

∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

ℓ times

. (25)

The multiple fermionic p-adic integrals considered here are defined as the it-
erated integrals. At the kth iteration with 1 ≤ k ≤ ℓ, for each fixed vector
(zk+1, . . . , zℓ) ∈ Zℓ−kp , we integrate∫

Zp
Fk(zk, zk+1, . . . , zℓ)dµ−1(zk), (26)
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for Fk(zk, zk+1, . . . , zℓ) ∈ UD(Zp). Under these conditions, we use the notation
(cf. [30, (2.29)]) ∫

Zℓp
f(z)dµ−1(z), where z = (z1, . . . , zℓ), (27)

to denote the multivariate fermionic p-adic integral∫
Zℓp
f(z1, . . . , zℓ)dµ−1(z1) · · · dµ−1(zℓ). (28)

Also, for any compact open subset O of Zℓp, the integral of on O is defined by∫
O

f(z)dµ−1(z) =

∫
Zℓp
f(z) · (characteristic function of O)dµ−1(z)

(cf. [13, Chap. II]). Setting

D =
{
t ∈ Cp | |t|p < p−

1
p−1

}
.

For a fixed t ∈ D, e(z1+···+zℓ)t is an analytic function for z = (z1, . . . , zℓ). Ap-
plying (28) to the function

f(z) = e(z1+···+zℓ)t

we see that the generating function of higher order Euler polynomials can be
represented by the fermionic p-adic integral on Zp, that is, for t ∈ D and x ∈ Zp
we have ∫

Zℓp
e(x+z1+···+zℓ)tdµ−1(z) =

(
2

et + 1

)ℓ
ext =

∞∑
m=0

E(ℓ)
m (x)

tm

m!
(29)

(cf. [10]). By substituting the Taylor expansion of e(x+z1+···+zℓ)t in the above
equation, we see that

∞∑
m=0

∫
Zℓp
(x+ z1 + · · ·+ zℓ)

mdµ−1(z)
tm

m!
=

∞∑
m=0

E(ℓ)
m (x)

tm

m!
. (30)

Moreover, by comparing coefficients of tmm! on the both sides in (30), for integers
m ≥ 0, we obtain ∫

Zℓp
(x+ z1 + · · ·+ zℓ)

mdµ−1(z) = E(ℓ)
m (x), (31)

which is similar with those in [11, 28]. Differentiating both sides of (31) with
respect to x, we get

d

dx
E(ℓ)
m (x) = mE

(ℓ)
m−1(x) and degE(ℓ)

m (x) = m.

From (29) and (31), we have the following lemma.
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Lemma 3.1. (1) For integers m ≥ 0 and n ∈ N,∫
Zℓp
(x+ n(z1 + · · ·+ zℓ))

mdµ−1(z) = nmE(ℓ)
m

(x
n

)
.

(2) For integers m ≥ 0,

ℓ∑
j=0

(
ℓ

j

)∫
Zℓp
(j + x+ z1 + · · ·+ zℓ)

mdµ−1(z) = 2ℓxm,

which is equivalent to
E(ℓ)
m (x) + E(ℓ)

m (x+ 1) + · · ·+ E(ℓ)
m (x+ ℓ) = 2ℓxm.

In particular, we have Em(x) + Em(x+ 1) = 2xm.

Proof. Part (1) follows immediately from (31). To see Part (2), note that by
(29) we have

(et + 1)ℓ
∫
Zℓp
e(x+z1+···+zℓ)tdµ−1(z) = 2ℓext.

The result follows by equating the coefficients of t in the above equation. □

From (8) and Lemma 3.1(1) with n = 2, x = ℓ, we get

E(ℓ)
m = 2mE(ℓ)

m

(
ℓ

2

)
(32)

(see [20, Proposition 10]). By changing t → 2t and setting x = ℓ
2 in (29),

we obtain the following multiple fermionic p-adic integral representation for the
generating function of the higher order Euler numbers.

Proposition 3.2. Let t ∈ D. We have∫
Zℓp
e(2(z1+···+zℓ)+ℓ)tdµ−1(z) =

(
1

cosh t

)ℓ
.

In particular, for integers m ≥ 0, we have∫
Zℓp
(2(z1 + · · ·+ zℓ) + ℓ)mdµ−1(z) = E(ℓ)

m .

Remark 3.1. From (31) and Proposition 3.2, we have (see (8) above)

E(ℓ)
m (x) = 2−m

∫
Zℓp
(2x+ 2(z1 + · · ·+ zℓ))

mdµ−1(z)

= 2−m
m∑
k=0

(
m

k

)
(2x− ℓ)m−k

∫
Zℓp
(2(z1 + · · ·+ zℓ) + ℓ)kdµ−1(z)

=

m∑
k=0

(
m

k

)
1

2k

(
x− ℓ

2

)m−k

E
(ℓ)
k ,
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which can be seen as an extension of the Taylor expansion for Em(x) around
x = 1/2 :

Em(x) =

m∑
k=0

(
m

k

)
Ek
2k

(
x− 1

2

)m−k

(see [22, p. 25, (32)]).

Proposition 3.3 ([12, Theorem 2.2(3)]). Let q be an odd positive integer. For
f ∈ UD(Zp), we have∫

Zp
f(z)dµ−1(z) =

q−1∑
j=0

(−1)j
∫
Zp
f(j + qz)dµ−1(z).

Proof. Although it is known, we would like to provide a detail proof here for the
completeness. From (23), we obtain

q−1∑
j=0

(−1)j
∫
Zp
f(j + qz)dµ−1(z) =

q−1∑
j=0

(−1)j lim
N→∞

pN−1∑
z=0

f(j + qz)(−1)z

= lim
N→∞

qpN−1∑
z=0

f(z)(−1)z

=

q−1∑
j=0

(−1)j lim
N→∞

pN−1∑
z=0

f(jpN + z)(−1)z,

since p is an odd prime and q is an odd positive integer. Therefore, due to the
uniform convergence, we can put the limit into the sum and get

lim
N→∞

pN−1∑
z=0

f(jpN + z)(−1)z = lim
N→∞

pN−1∑
z=0

lim
M→∞

f(jpM + z)(−1)z

= lim
N→∞

pN−1∑
z=0

f(z)(−1)z =

∫
Zp
f(z)dµ−1(z)

for any integer j. This completes our proof. □

From (31) and Proposition 3.3, we obtain the following corollary.

Corollary 3.4 (Multiple Raabe’s theorem). For an odd integer q and m ≥ 0,
we have

E(ℓ)
m (qx) = qm

q−1∑
j1,...,jℓ=0

(−1)j1+···+jℓE(ℓ)
m

(
x+

j1 + ·+ jℓ
q

)
.

Proposition 3.5. For integers m ≥ 1 and ℓ ≥ 1, we have

E(ℓ)
m ≡ 0 (mod ℓ).
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Remark 3.2. A different proof of Proposition 3.5 has been given in [18, Lemma
1].

Proof of Proposition 3.5. From Proposition 3.2 with m = 1, we have

E
(ℓ)
1 =

∫
Zℓp
(2(z1 + · · ·+ zℓ) + ℓ)dµ−1(z)

=

∫
Zℓp
(2z1 + 1)dµ−1(z) + · · ·+

∫
Zℓp
(2zℓ + 1)dµ−1(z)

= E1 ·
∫
Zℓ−1
p

dµ−1(z2, . . . , zℓ) + · · ·+ E1 ·
∫
Zℓ−1
p

dµ−1(z1, . . . , zℓ−1)

= ℓE1 = 0,

since E1 = 0. On the other hand, for m ≥ 1, we have∫
Zℓp
z1(2(z1 + · · ·+ zℓ) + ℓ)mdµ−1(z) =

∫
Zℓp
z2(2(z1 + · · ·+ zℓ) + ℓ)mdµ−1(z)

= · · ·

=

∫
Zℓp
zℓ(2(z1 + · · ·+ zℓ) + ℓ)mdµ−1(z).

(33)
From Proposition 3.2 and (33), we have

E
(ℓ)
m+1 = 2

∫
Zℓp
(z1 + · · ·+ zℓ)(2(z1 + · · ·+ zℓ) + ℓ)mdµ−1(z)

+ ℓ

∫
Zℓp
(2(z1 + · · ·+ zℓ) + ℓ)mdµ−1(z)

= 2ℓ

∫
Zℓp
z1(2(z1 + · · ·+ zℓ) + ℓ)mdµ−1(z)

+ ℓ

∫
Zℓp
(2(z1 + · · ·+ zℓ) + ℓ)mdµ−1(z)

≡ 0 (mod ℓ),

(34)

where m ≥ 0. This completes the proof. □

Proposition 3.6. For integers m,n ≥ 1 and ℓ ≥ 1,we have

E(ℓ+n)
m ≡ E(n)

m (mod ℓ).

Remark 3.3. For a different proof of Proposition 3.6, see [18, Lemma 2].
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Proof of Proposition 3.6. For z = (z1, . . . , zℓ+n) ∈ Zℓ+np , by Proposition 3.2 we
have

E(ℓ+n)
m

=

∫
Zℓ+np

(2(z1 + · · ·+ zℓ+n) + ℓ+ n)mdµ−1(z)

=

∫
Zℓ+np

((2(z1 + · · ·+ zℓ) + ℓ) + (2(zℓ+1 + · · ·+ zℓ+n) + n))mdµ−1(z)

=

m∑
i=1

(
m

i

)∫
Zℓ+np

(2(z1 + · · ·+ zℓ) + ℓ)i(2(zℓ+1 + · · ·+ zℓ+n) + n)m−idµ−1(z)

+

∫
Zℓ+np

(2(zℓ+1 + · · ·+ zℓ+n) + n)mdµ−1(z)

=

m∑
i=1

(
m

i

)∫
Zℓp
(2(z1 + · · ·+ zℓ) + ℓ)idµ−1(z1, . . . , zℓ)

×
∫
Znp

(2(zℓ+1 + · · ·+ zℓ+n) + n)m−idµ−1(zℓ+1, . . . , zℓ+n)

+

∫
Zℓp
dµ−1(z1, . . . , zℓ)

∫
Znp

(2(zℓ+1 + · · ·+ zℓ+n) + n)mdµ−1(zℓ+1, . . . , zℓ+n)

≡ E(n)
m (mod ℓ),

(35)
since

E
(ℓ)
i =

∫
Zℓp
(2(z1 + · · ·+ zℓ) + ℓ)idµ−1(z1, . . . , zℓ) ≡ 0 (mod ℓ), i ≥ 1

(see Proposition 3.5 above) and

E
(ℓ)
0 =

∫
Zℓp
dµ−1(z1, . . . , zℓ) =

(∫
Zp
dµ−1(z)

)ℓ
= (E0)

ℓ = 1.

This completes the proof. □

Let Z×
p be the group of p-adic units. Here we consider the function f(z) =

e(z1+···+zℓ)t on the domains

(Zℓp)× = {z = (z1, . . . , zℓ) ∈ Zℓp | z1 + · · ·+ zℓ ∈ Z×
p },

and

p(Zℓp) = {z = (z1, . . . , zℓ) ∈ Zℓp | z1 + · · ·+ zℓ ∈ pZp}.
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It is easy to see that∫
(Zℓp)×

(z1 + · · ·+ zℓ)
mdµ−1(z) =

∫
Zℓp
(z1 + · · ·+ zℓ)

mdµ−1(z)

−
∫
p(Zℓp)

(z1 + · · ·+ zℓ)
mdµ−1(z)

(36)

(cf. [13]). In the following, we will show that the expression∫
(Zℓp)×

(z1 + · · ·+ zℓ)
mdµ−1(z) (37)

can be interpolated p-adically. To our purpose, we deal with the second integral
on the right-hand side of (36). For |t|p < p−

1
p−1 , by (23) and (28), we have∫

p(Zℓp)
e(z1+···+zℓ)tdµ−1(z)

= lim
N→∞

pN−1∑
z1,...,zℓ=0

z1+···+zℓ≡0 (mod p)

e(z1+···+zℓ)t(−1)z1+···+zℓ

= lim
N→∞

p−1∑
j1,...,jℓ=0

j1+···+jℓ≡0 (mod p)

pN−1−1∑
z′1,...,z

′
ℓ=0

e((j1+pz
′
1)+···+(jℓ+pz

′
ℓ))t

× (−1)(j1+pz
′
1)+···+(jℓ+pz

′
ℓ)

=

p−1∑
j1,...,jℓ=0

j1+···+jℓ≡0 (mod p)

e(j1+···+jℓ)t(−1)j1+···+jℓ

× lim
N→∞

(
1 + ep

N t

1 + ept

)ℓ
.

(38)

Since epN t → 1 as N → ∞, we find that∫
p(Zℓp)

e(z1+···+zℓ)tdµ−1(z)

=

p−1∑
j1,...,jℓ=0

j1+···+jℓ≡0 (mod p)

(−1)j1+···+jℓe(j1+···+jℓ)t
(

2

1 + ept

)ℓ
.

(39)
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By comparing the coefficients of tm(m ≥ 0) in the above equation, we have∫
p(Zℓp)

(z1 + · · ·+ zℓ)
mdµ−1(z)

= pm
p−1∑

j1,...,jℓ=0
j1+···+jℓ≡0 (mod p)

(−1)j1+···+jℓE(ℓ)
m

(
j1 + · · ·+ jℓ

p

)
.

(40)

Therefore, we obtain the following result.

Lemma 3.7. For every nonnegative integers m ≥ 0 and ℓ ≥ 1, we have∫
p(Zℓp)

(z1 + · · ·+ zℓ)
mdµ−1(z)

= pm
p−1∑

j1,...,jℓ=0
j1+···+jℓ≡0 (mod p)

(−1)j1+···+jℓE(ℓ)
m

(
j1 + · · ·+ jℓ

p

)
.

By (31), (36) and Lemma 3.7, we have the following result.

Lemma 3.8. For every nonnegative integers m ≥ 0 and ℓ ≥ 1, we have∫
(Zℓp)×

(z1 + · · ·+ zℓ)
mdµ−1(z)

= E(ℓ)
m (0)− pm

p−1∑
j1,...,jℓ=0

j1+···+jℓ≡0 (mod p)

(−1)j1+···+jℓE(ℓ)
m

(
j1 + · · ·+ jℓ

p

)
.

For z1 + · · ·+ zℓ ∈ Z×
p and m ≡ n (mod pN (p− 1)), we have∫

(Zℓp)×
(z1 + · · ·+ zℓ)

mdµ−1(z) ≡
∫
(Zℓp)×

(z1 + · · ·+ zℓ)
ndµ−1(z) (mod pN+1)

(see [13, the corollary at the end of §5]). So by Lemma 3.8, we have the following
result.

Theorem 3.9 (Kummer-type congruences). Let m ≡ n (mod pN (p − 1)) with
p− 1 ∤ m. We have

E(ℓ)
m (0)−pm

∑
α∈J0

(−1)pαE(ℓ)
m (α) ≡ E(ℓ)

n (0)−pn
∑
α∈J0

(−1)pαE(ℓ)
n (α) (mod pN+1),

where

J0 =

{
1

p
j

∣∣∣∣ j = j1 + · · ·+ jℓ ≡ 0 (mod p)

for some j1, . . . , jℓ with 0 ≤ j1, . . . , jℓ ≤ p− 1

}
and in

∑
α∈J0 we sum over α = 1

pj as many times as j being expressed in the
form j = j1 + · · ·+ jℓ by various ji’s.
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Letting ℓ = 1 in the above theorem, we immediately get:
Corollary 3.10. If m ≡ n (mod pN (p− 1)) with p− 1 ∤ m, then

(1− pm)Em(0) ≡ (1− pn)En(0) (mod pN+1).

By (10), Corollary 3.10 and the congruence
2(1− 2m+1) ≡ 2(1− 2n+1) (mod pN+1)

for m = n (mod pN (p− 1)), we recover the following well-known Kummer con-
gruence for Bernoulli numbers (see [4, 6, 13]).
Corollary 3.11 (The Kummer congruence for Bernoulli numbers). If m = n
(mod pN (p− 1)) with p− 1 ∤ m, then

(1− pm)
Bm+1

m+ 1
≡ (1− pn)

Bn+1

n+ 1
(mod pN+1).

As a corollary, if p − 1 ∤ m and m ≡ n (mod pN (p − 1)) and m,n ≥ N + 2,
then

Bm
m

≡ Bn
n

(mod pN+1). (41)
This kind of congruence was first found by Kummer [15] around 1850s, but
applying it to get the p-adic interpolation of the Riemann zeta function was
discovered lately by Kubota and Leoplodt [14] in 1964.
Theorem 3.12. Let α, etc., be defined as above. The function

−m 7−→ E(ℓ)
m (0)− pm

∑
α∈J0

(−1)pαE(ℓ)
m (α) (42)

admits a continuation from the set {0,−1,−2, . . .} to Zp as a p-adic continuous
function η∗ℓ,p : Zp → Qp. It has the integral representation

η∗ℓ,p(s) =

∫
(Zℓp)×

(z1 + · · ·+ zℓ)
−sdµ−1(z). (43)

Proof. Let z1 + · · · + zℓ ∈ Z×
p , (p, a) 6= 1 and let m ≡ m′ (mod pN (p − 1))

with (p − 1,m) = 1. It is easy to see that (z1 + · · · + zℓ)
m ≡ (z1 + · · · + zℓ)

m′

(mod pN+1). Therefore, we have (using the corollary at the end of §5 in [13])∫
(Zℓp)×

(z1 + · · ·+ zℓ)
mdµ−1(z) ≡

∫
(Zℓp)×

(z1 + · · ·+ zℓ)
m′
dµ−1(z) (mod pN+1),

which allows us to extend the function

f(m) =

∫
(Zℓp)×

(z1 + · · ·+ zℓ)
mdµ−1(z)

from {0,−1,−2, . . .} to Zp by the continuation. We denote this function by
η∗ℓ,p(s) and it has the integral representation

η∗ℓ,p(s) =

∫
(Zℓp)×

(z1 + · · ·+ zℓ)
−sdµ−1(z). (44)
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Finally, the special values (42) follows from Proposition 2.8 and the proof of
Lemma 3.8. □

Acknowledgment : The author would like to thank Prof. Su Hu for his
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