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1. Introduction

Euler numbers, denoted by E,, for m > 0, count the number of odd alternat-
ing permutations of a set with an even number of elements. They are related
to the Bernoulli numbers. The odd-indexed Euler numbers are all zero since its
generating function is even (see [1, 2, 3, 7, 29]). The Euler numbers E,, satisfy
the following recurrence relation (cf. [29, (1.2)])

Eo=1, (E+1)"+(E-1)"=0, m>1. (1)

From this, by the induction we can also conclude that the odd-indexed Euler
numbers are all zero and all the Euler numbers Ey, Fs, ... are integers.

Let ¢ be a positive integer. Recently, Liu [18] introduced the higher order
Euler numbers and gave some applications related to them. It is known [17, 18]
that the higher order Euler numbers are defined by the following generating
function
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where the symbol = is used to denote symbolic or umbral equivalences under-
stand as (E(©)™ = E{Y). From the multinomial theorem, we have

oo

o0 tm
Z_OE%)M: Z Z (jl’_7.n_’je>Ejl"'Ejz ml (3)

m=0 \ ji+-+je=m
Ji,--,3¢20

By (3), we see that the higher order Euler numbers are linked with the ordinary
Euler numbers by the following identity

E%): E ( " ->Ej1"'Ej17 m > 0. (4)
Jittje=m ML Je ‘
J1,--3e20

It is seen from (1) and (4) that the higher order Euler numbers EY) are integers.
These numbers satisfy the following recurrence formula

L
? 28 m=0
E(f) 25 — m _ ) )
2 <j)( A0 {07 m>1, ®

j=0
in which we understand that the expression on the left is expanded in powers
of E®, and ecach terms (E(®)™ is replaced by E. The higher order Euler
polynomials E,(f)(:z:) satisfy the following generating function

O(g 2 \*¢
E([')(:L’)t (E Z _ xt
e E E E(¢ =la71) ¢ (6)

m=0

in which, the symbol = is used to denote symbolic or umbral equivalences. It
has been appeared in [5, (3.15)], [17, (8)] and [22, (78)]. Moreover, the rela-
tion E(z) 2’”E( ) ( ) follows by setting = = % in (6), replacing t by 2t and
then comparing with (2). From (6), it is easy to verify that EY (x +y) =
S (ME E)(m) m=k_Note that we have E\ () =a™

It is also easy to see that (d/dz)E Z)( ) = mEff)_l(x) for m > 0. From (2)
and (6), we have the following the identity

2 \' 2 ‘o)
:ct: x—L/2)t 7
(57) = () e ™)

It implies the Taylor expansion of Ef(f)(a:) around x = ¢/2 (cf. [24]):

B (2) = i (’:) ’1;(:) (a; - §>M (8)

which holds for all nonnegative integers m and all real x. Clearly, the classical
Euler polynomials and numbers are given by

1
Enfa) = B(s) and By = B =278, (5. )
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respectively (cf. [29]). From the generating function (6) we have E,,(0) = 0 if
m is even. Therefore, E,, # Ep,(0); in fact

2
m+1

here we recall that the Bernoulli numbers B,, are defined by the generating
function

Em(0) = —E,,(1) = (1-2""B1, m>0, (10)

B _ N~ BO" g~ "t
¢ _m,z::() m)! _mz::OBmm!_et—l' (11)

We also mention that the Bernoulli polynomials B, (x) are defined by B, (x) =
2o (7)™ F By

Recently, the higher order Euler numbers and polynomials have been investi-
gated by many experts from different viewpoints such as number theory, math-
ematical analysis and statistics (see [2, 11, 25, 26, 28]). In [4], Chen obtained
many interesting congruences related to Euler polynomials E,, (z) by using the
results of Eie and Ong [6]. Recently, the congruences for higher order Euler
numbers have been further investigated by Liu [17, 18].

The main aim of this paper is to prove Kummer-type congruences for the
higher order Euler numbers and polynomials by using the multiple fermionic
p-adic integrals.

2. Higher order Euler numbers, polynomials and multiple
Hurwitz-Euler eta functions

In this section, we shall introduce the higher order Euler numbers and poly-
nomials, the multiple Hurwitz-Euler eta functions and analyze their elementary
properties and relations.

For ¢ > 1, we write

(=%3) 1= ) = (11_—((—)))2

q—1 (12)
— ot Z (=1)drt e Ut i) +0t
J1,--,3e=0
On the other hand, by using the binomial theorem and (2), we have
2t \* sl O (L (g+1)j . (2¢5)t
N (13)

N
= Z ( ) (_1)<q+1>je(E“>+2qj)t_
i=o \J

Comparing the coefficients of t™ in the Taylor expansion around 0 for the right-
hand sides of (12) and (13), we get the following proposition.
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Proposition 2.1. Let ¢ and q be positive integers. For any non-negative integer
m, we have

0 q—1
§<j)(—1)(q+1>ﬂ (E<’~’>+2qj) =20 Y (1P ) O™
j=0 J1s--,50=0

with the usual convention of replacing (E©)" by Ei(e).
Remark 2.1. Letting £ = 1 in Proposition 2.1, we have

R ) UL EE w TR

This identity is due to Maiga [21, Proposition 2.3].

Lemma 2.2. Let g be an odd integer with ¢ > 1. Then for any non-negative
integer m, we have

q—1
B = 30 ()PP 4+ G + O™ (mod g).
J1yee,5e=0

Proof. For m > 0 we have
A " (m ¢ .
(E(e) + 2q]> = Z (k)Efn)_k(qu)k.
k=0
For an odd integer g > 1, the left hand side of Proposition 2.1 implies

S ()5 (1)t =2t wota, 0

=0 M5

since Zﬁzo (j) = 2%, Therefore, by Proposition 2.1 and (15) we obtain the
assertion. g

Letting £ = 1 in the above lemma, we immediately get the following result.
Corollary 2.3 ([8, Lemma 2.5]). Let g be an odd integer with g > 1. Then for

any non-negative integer m, we have

qg—1

E, = Z(fl)j@j +1)™ (mod q).

3=0
Theorem 2.4. Let m be a positive integer and p an odd prime. We have

¢ ¢
E((p)fl)+2m = Eé ) (mod p).

Proof. By Lemma 2.2, we have

p—1
ES) = 3 (—1)HG 4+ o) + 0™ (mod p)
J1see5Je=0
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and
p—1
EQ) = O (FD)PTHR 4 4 o) + 0P (mod p).
J1ye-57e=0

Then by Fermat’s Little Theorem we get

p—1
¢ b } . ¢
BYO in= S (CLPFR( 4+ ) + 02" = BY) (mod p),
Jiseeje=0
which completes the proof of Theorem 2.4. O

Putting £ =1 in Theorem 2.4 we immediately get the following result.
Corollary 2.5 ([8, Theorem 3.2]). Let m be a positive integer and p an odd
prime. We have

E(p71)+2m = Eop (mOd p)

The following is the definition for multiple Hurwitz-Euler eta functions.
Definition 2.6 ([5, p. 314, (3.3)]). For > 0 and ¢ > 1, the multiple Hurwitz-
Euler eta function 7(s,x) is defined by

g (—1)katthe

= R 0. 16
wen) = 2 GrrerRaa > 1o

Here u® = e®1°8% and logu = log |u| + iargu with —7 < argu < m for any
complex number u not on the nonpositive real axis.

In the case of £ = 1, it reduces to the Hurwitz-Euler eta function

< 1)k
n(s,x) = Z ((1) Re(s) > 0. (17)

iz (B2

Further setting x = 1 in the above equation, we recover the Dirichlet eta function
(or the alternating Riemann zeta function)

%0 1yk—1
n(s) = Z L, Re(s) > 0. (18)

ks
k=1

The analytic continuation and special values of 7,(s,x) are implied by the
following contour integral representation of 7(s, x).

Theorem 2.7 ([5, Theorem 4]). The multiple Hurwitz- Euler eta function ne(s, x)
is expressed as a contour integral

T —s) [ (=) te
m(s, @) = ——5 5 /C Tt

where 0 < ¢ < 7 and C is the path from +oco to c¢ along the real axis, going
along the circle around 0 of radius ¢ counter-clockwise to ¢, and then going back
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to +00. This expression gives us the analytic continuation of ny to the whole
complex s-plane, and also for a positive integer m we find that

_1)m
w0 = 00—

In particular, for the Hurwitz-Euler eta function n(s,x), we have n(—m,x) =
(—1)™E,(1 —x)/2.

Let p be an odd prime number. We get rid of the terms 1/(k1 +--- + k¢ +x)°
with k1 + - - - + kg divisible by p in (16) by defining

_ > (71)k1+~'+/€e
= 1
77£(S,=T) N .ZIW:O (kl +"'+kg+x)3’ ( 9)

pt(k1+--+ke)

for Re(s) > 0 and = > 0. From (19), we have

_ (oo} (_1)k1++k[
$,x) =ne(s,z) —
7e(s,x) = ne(s,x) . 2};7 (ky + -+ ke + )8
Lyeeny =0
pl(k1+-+ke)
p—1 [ee) . L ’
—1)dr PRtttk
= (s, 7) = Z Z ; ( k;/) i k! s
J1seerje=0 k) s k=0 (J1 + PRy + -+ + e + pky + @)
Jji+-+je=0 (mod p)
p—1 . )
Smlsa)—pT Y ()R, ( HWE) |
Jlseens Je=0 p
j1+--+7¢=0 (mod p)
(20)
Since
EO @) = (~1)"EO( —z), m>0,
from Theorem 2.7 and (20) we have
S 1+ +jetw
5 E%) (z) —p™ Z (,1)j1+-~~+jeE7(rz;) <]1]e>
Tlseees Je=0 P
j1+-+7¢=0 (mod p)
p—1 . )
= W(—m,a:) —p™ Z (_1)j1+w+jzm (—m, MW)
J1,--3¢=0 p
Jj1+-+je=0 (mod p)
= 7¢(—m, x).
(21)

Thus we get the following proposition.
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Proposition 2.8. Let m >0 and x > 0. Then

ﬁf(_max)
1 p_l , .
=77 EY () —p™ Z (_1)j1+"'+j[E(£) (W>
2 m ' 4 m »
J1,--30=0

ji+-+7e=0 (mod p)

3. Kummer-type congruences for Ey(,f) and Ey(,f) (z)

In this section, let p be a fixed odd prime number, let Z,,Q, and C, be the
ring of p-adic integers, the field of p-adic numbers and the completion of the
algebraic closure of Q,, respectively, let | - |, be the p-adic valuation on Q with
lplp = p~!. As usual, the extended valuation on C, is also denoted by the same
symbol | - |,.

Setting

2+ "Ly ={z € Q|| —zl, <p~ M},
where z € Z lies in 0 < z < p~. For any positive integers N, we define
por(z+pNZy) = (<1)7, (22)
which is known as be fermionic p-adic measures on Z,. Let UD(Z,) be the space
of uniformly (or strictly) differentiable function on Z,. Using the fermionic p-adic
measure, we define the fermionic p-adic integral on Z, as follows:

pN -1

/Z ) = Jim 3 S (23)

for f € UD(Z,). The fermionic p-adic integral (23) were independently found by
Katz [9, p. 486] (in Katz’s notation, the u(?)-measure), Shiratani and Yamamoto
[27], Osipov [23], Lang [16] (in Lang’s notation, the E; o-measure), T. Kim [10]
from very different viewpoints. Let E be the translation with (Ef)(z) = f(z+1).
The formula (23) reduces to

)
/f(Z)du—l(Z):2f(0)*/ (Ef)(z)dp-1(2). (24)
Ly Zp

L[ )
b he

£ times
The multiple fermionic p-adic integrals considered here are defined as the it-
erated integrals. At the kth iteration with 1 < k < /¢, for each fixed vector
(Zkt1y---520) € Zf)_k, we integrate

Let

/ Fi(2ks 2t1s - - 20)dp—1(2k), (26)
Zp
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for Fy(zk, k41, - - ., 2¢) € UD(Zy). Under these conditions, we use the notation
(cf. [30, (2.29)])

» f®@)dp-1(z), wherez = (z1,...,2¢), (27)
to denote the multiv;riate fermionic p-adic integral
» fz1, .o ze)dpu—1(21) -+ - dp—1(2e). (28)
Also, for any compact open subset O of Zf;, the integral of on O is defined by
/Of(f)du_l(z) = . f(Z) - (characteristic function of O)du_1(z)
(cf. [13, Chap. IIJ). Settingp
D:{tecp||t\p<p‘ﬁ}.

For a fixed t € D, e(*1++20t is an analytic function for Z = (21,..., z). Ap-
plying (28) to the function
f(?) _ e(Z1+~~+zz)t

we see that the generating function of higher order Euler polynomials can be
represented by the fermionic p-adic integral on Z,, that is, for t € D and = € Z,,

we have
/z

(cf. [10]). By substituting the Taylor expansion of e(®+21++20 in the above
equation, we see that

4 [eS)
2 tm
(w+z1+---+zz)td (3 = xt _ § E(Z) 2
¢ 1-1(7) <et + 1) € = m (x)m! (29)

4
p

m=0"%, ’ m=0 ’

m

Moreover, by comparing coefficients of on the both sides in (30), for integers

m > 0, we obtain

m!

[ tmte i) = ED ), (1)
Ly

which is similar with those in [11, 28]. Differentiating both sides of (31) with
respect to z, we get

d
d—E,(,f)(ac) = mEﬁfll(x) and  deg B (z) = m.
x

From (29) and (31), we have the following lemma.
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Lemma 3.1. (1) For integers m >0 and n € N,

/

(2) For integers m > 0,

x
(24 (1 + o 20))"dpua (2) = 0" B (2.
f) n

14

14
> <]> / G+z+21++2)"dp_1(2) = 2ta™,
7=0 z

14
which is equivalent to
EQ@) +EP (@ +1)+- -+ EQ(x +0) =22™,
In particular, we have E,,(z) + Ep(z + 1) = 22™.

Proof. Part (1) follows immediately from (31). To see Part (2), note that by
(29) we have

(et + 1)5/ elztaittzoty, | (z) = 2%,
Zy
The result follows by equating the coefficients of ¢ in the above equation. O

From (8) and Lemma 3.1(1) with n = 2,2 = ¢, we get

‘
E© = omp(t <2) (32)

(see [20, Proposition 10]). By changing ¢ — 2t and setting = £ in (29),
we obtain the following multiple fermionic p-adic integral representation for the
generating function of the higher order Euler numbers.

Proposition 3.2. Lett € D. We have

¢
1
/Z ‘ Ho1(Z) (cosht)

£
p

In particular, for integers m > 0, we have

/ (2(21 + 4 20) +O)™dpu_1(z) = EY.
z;

Remark 3.1. From (31) and Proposition 3.2, we have (see (8) above)

EO (z) = 2—m/ (2242021 + -+ 20))™dp_1 ()
2t

=2 kZ:O (k:) (2z — e)’”"“/Z 2z + -+ 20) + OFdp1(2)

£
P

m m\ 1 / m—k ©
RO GRS

k=0
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which can be seen as an extension of the Taylor expansion for E,,(x) around

r=1/2: . B}
e HEI )

(see [22, p. 25, (32)]).

Proposition 3.3 ([12, Theorem 2.2(3)]). Let q be an odd positive integer. For
f€eUD(Z,), we have

/f )dp—1(z :qzl j/pr(j+qz)du_1(z).

Jj=0

Proof. Although it is known, we would like to provide a detail proof here for the
completeness. From (23), we obtain

qg—1 q—l P N_1
S [ 1+ () = 31 P Jim, 301G+
j=0 Zp j:O
ap™ -1
= lim 2:;) F(2)(=
qg—1 p N_1
:Z 1jhm ijp +2)(—-1)7,

j=0
since p is an odd prime and ¢ is an odd positive integer. Therefore, due to the
uniform convergence, we can put the limit into the sum and get

pN -1

Jim Z fGpN +2)(-1)* = lim Y~ Jim f(p +2)(=1)
0

for any integer j. This completes our proof. U
From (31) and Proposition 3.3, we obtain the following corollary.

Corollary 3.4 (Multiple Raabe’s theorem). For an odd integer q and m > 0,
we have

q—1 ) .
EQ(gr)=q™ Y (-)nttpd (x N Hqﬂe) |
G14eerde=0
Proposition 3.5. For integers m > 1 and £ > 1, we have
EY =0 (mod ¢).
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Remark 3.2. A different proof of Proposition 3.5 has been given in [18, Lemma
1].

Proof of Proposition 3.5. From Proposition 3.2 with m = 1, we have

B = /Z (@221 20) + Odpa (7)

P
/Z;;

:El'/[ d#—1(227~-~,ze)+"'+E1'/ dp—1(z1,. .., 20-1)
5t

-1
Ly

(221 + 1)dp—1(2) + - - - +/ (22z¢ + 1)dp_1(%)

£
ZP

=(E; =0,

since F1 = 0. On the other hand, for m > 1, we have

/ 2120z -+ 2) F )" dpa(z) = / 22(2(z1 + -+ 20) +0)"dp—1(2)
Z Z

4 £
p p

:/Z 2020z + -+ z0) + 0)"dp_1(2).

£
p

From Proposition 3.2 and (33), we have )
B =2 / (ot 220+ 20) + 0" (3)
+/ » (2(z1 4+ -4 2z0) +O)"dp—1(Z)
»
=20 [ (et 2+ O () (34
+ E/Z@ (2(z1 4+ 4 20) + O™ dp—1(2)
=0 (mpod 0),
where m > 0. This completes the proof. O

Proposition 3.6. For integers m,n > 1 and £ > 1,we have
EYH™ = EM - (mod ¢).

Remark 3.3. For a different proof of Proposition 3.6, see [18, Lemma 2].
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Proof of Proposition 3.6. For Z = (z1,...,204n) € fo”, by Proposition 3.2 we
have

= Z (m) /Z (2(z1 4+ 20) + 0" (2(ze41 + -+ 2e4n) + 1) dpu_1(2)

- / o @z o Zen) )i (2)
e

P

7

_ i (m) /Z 2z 4+ 20) + O (21, 20)

p

(2(z041 4+ + 204n) + 1) dp—1(2e515 - -+ Zo4n)

n

X
'EN\

+ dp_1(z1,. .., Zz)/ (2(z041 + -+ 2oqn) + )" dpu—1(Zeg1, - -+ Z04n)
zZ

2 n
ZP p

=E™  (mod /),

m

since

Ei“):/ (2021 + -+ 20) + O'dp_1(21,...,20) =0 (mod £), i>1
Z

£
D

(see Proposition 3.5 above) and

Eél):/ d,U/fl(Zla""ZZ): </
7 Z

This completes the proof. O

¢
dﬂ1(2)> = (EO)K =1

2
D P

Let Z) be the group of p-adic units. Here we consider the function f(z) =
elz1t+20t on the domains

(ZL)* ={Z=(21,-.,2) €T, |z + -+ 2 € L)},

and

P(ZY) ={Z=(21,...,20) €L, | 21 + -+ + 20 € PLy}.
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It is easy to see that

/ (7144 20)"dpu—1(Z) :/ (z1 4+ 2z0)"du_1(2)
(z4)

7L
’ (36)
- / (z1+ -+ 20)"dp—1(2)
p(Z%)
(cf. [13]). In the following, we will show that the expression
[ st mmdua) (37)
(z3)*

can be interpolated p-adically. To our purpose, we deal with the second integral
on the right-hand side of (36). For [t|, < p_Pil, by (23) and (28), we have

/ 6(21+'--+22)tdu71(2)
p(Z%)

pN—1
— lim Z e(zl+“‘+zl)t(_1)Z1+"'+ZZ

N—o0
214...,2¢=0
z1+-+2¢=0 (mod p)

p—1 PN
— lim E E e(G1Hp21)++(e+p2p))t
N—oc0 . * 0 , "o
J15e-00= s Zp=
ji++je=0 (mod p) ! ¢ (38)

% (,1)(3’1+p21)+~-+(jz+pZL)

p—1
— Z e(j1+‘-~+jz)t(_1)j1+~-+jz

 iede=0
Ji+-+7¢=0 (mod p)

Since et — 1 as N — oo, we find that

p(Z%)

p—1

4
. . ) . 2
_ § ' 1\t tde (it et
- (-1) € (1+6Pt> '

J1s---590=0
ji++7e=0 (mod p)
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By comparing the coefficients of "™ (m > 0) in the above equation, we have

/ (14 -+ 2)™dp 1 (3)
p(Z%)

p—1 . - 40
=p" > (1)t gl <31+"'+”). 10
Jiseesde=0 p

Ji+:+74¢=0 (mod p)

Therefore, we obtain the following result.

Lemma 3.7. For every nonnegative integers m > 0 and £ > 1, we have

/ (21 + -+ 20)"dp-1(2)
p(Z%)

p—1

=p™ Z (_1)j1+~~~+sz7(£) (jl +- +JZ) '

Jraneendt=0 p
ji+-+7e=0 (mod p)

By (31), (36) and Lemma 3.7, we have the following result.

Lemma 3.8. For every nonnegative integers m > 0 and £ > 1, we have

/ (z1+ -+ 20)"dp—1(%)
(25)*

p—1 . '
J1y-5Je=0 p

Ji+-+5e=0 (mod p)
For z; + -+ 4z € Z) and m = n (mod p" (p — 1)), we have
/ (z1 4+ 20)"dp—1(z) = / (214 +2)"du_1(z) (mod pN*t1)
(Zg)* (z4)>
(see [13, the corollary at the end of §5]). So by Lemma 3.8, we have the following

result.

Theorem 3.9 (Kummer-type congruences). Let m = n (mod pY(p — 1)) with
p—141m. We have

ED0)=p™ > ()P El (a) = B (0)=p" > (=1)"*E(a) (mod pN ),
acJy a€Jy

sl li=qit 4 ie=0 (modp)
0 pj for some j1,.... 50 with0<j1,...,50 <p—1

where

. . 17- . 7- . .
and in ZaeJo we sum over & = -j as many times as j being expressed in the

form § = j1 4+ -+ 4 ju by various j;’s.
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Letting £ = 1 in the above theorem, we immediately get:
Corollary 3.10. If m =n (mod pN(p — 1)) with p — 1{m, then
(1= p™)Em(0) = (1 —p")E,(0) (mod p*).
By (10), Corollary 3.10 and the congruence
2(1 —2m+) =2(1 — 2"*1)  (mod pVH)

for m = n (mod p™ (p — 1)), we recover the following well-known Kummer con-
gruence for Bernoulli numbers (see [4, 6, 13]).

Corollary 3.11 (The Kummer congruence for Bernoulli numbers). If m = n
(mod p" (p — 1)) with p — 11 m, then
Byt Byt1
1—p™ =(1-p"
( )m +1 ( )n +1
As a corollary, if p—1{m and m =n (mod pY(p — 1)) and m,n > N + 2,
then

N+1).

(mod p

B, B,
—— = (mod pV ). (41)

This kind of congruence was first found by Kummer [15] around 1850s, but
applying it to get the p-adic interpolation of the Riemann zeta function was
discovered lately by Kubota and Leoplodt [14] in 1964.

Theorem 3.12. Let o, etc., be defined as above. The function
—m— B{(0) —p™ Y (1B (a) (42)
acdy

admits a continuation from the set {0,—1,-2,...} to Z, as a p-adic continuous
Junction ng , : Zp — Qp. It has the integral representation

)= [ Gt ) (43)

Proof. Let z1 4 -+ + 2z, € ZX,(p,a) # 1 and let m = m’ (mod p™(p — 1))

with (p — 1,7m) = 1. It is easy to see that (z1 4 --- 4 2¢)™ = (21 + - + z¢)™
(mod pN*1). Therefore, we have (using the corollary at the end of §5 in [13])

/(Zz) (z14+ 4 20)"du—1(z) = /(Zf) (214 -+ Ze)m/du,l(z) (mod pN+1),
P P

which allows us to extend the function
fom) = [t ) ()
(z5)x

from {0,—-1,-2,...} to Z, by the continuation. We denote this function by
n; »(s) and it has the integral representation

)= [ Gt ) (14)
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Finally, the special values (42) follows from Proposition 2.8 and the proof of
Lemma 3.8. O
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