DOI QR코드

DOI QR Code

Effect of moving load on dynamics of nanoscale Timoshenko CNTs embedded in elastic media based on doublet mechanics theory

  • Abdelrahman, Alaa A. (Mechanical Design and Production Department, Faculty of Engineering, Zagazig University) ;
  • Shanab, Rabab A. (Engineering Mathematics Department, Faculty of Engineering, Zagazig University) ;
  • Esen, Ismail (Department of Mechanical Engineering, Karabuk University) ;
  • Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
  • Received : 2021.01.30
  • Accepted : 2022.07.08
  • Published : 2022.07.25

Abstract

This manuscript illustrates the dynamic response of nanoscale carbon nanotubes (CNTs) embedded in an elastic media under moving load using doublet mechanics theory, which not considered before. CNTs are modelled by Timoshenko beam theory (TBT) and a bottom to up modelling nano-mechanics is simulated by doublet mechanics theory to capture the size effect of CNTs. To explore the influence of the CNTs configurations on the dynamic behaviour, both armchair and zigzag configurations are considered. The governing equations of motion and the associated boundary conditions are obtained using the Hamiltonian principle. The Navier solution methodology is applied to obtain the solutions for both orientations. Free vibration and forced response under moving loads are considered. The accuracy of the developed procedure is verified by comparing the obtained results with available previous algorithms and good agreement is observed. Parametric studies are conducted to demonstrate effects of doublet length scale, CNTs configurations, moving load velocities as well as the elastic media parameters on the dynamic behaviours of CNTs. The developed procedure is supportive in the design and manufacturing of MEMS/NEMS made from CNTs.

Keywords

References

  1. Abdelrahman, A.A. and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8.
  2. Abdelrahman, A.A., Esen, I., Daikh, A.A. and Eltaher, M.A. (2021a), "Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load", Mech. Based Design Struct. Machines, 1-24. https://doi.org/10.1080/15397734.2021.1999263.
  3. Abdelrahman, A.A., Esen, I., Ozarpa, C. and Eltaher, M.A. (2021c). "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Modelling, 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.
  4. Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M.A. and Assie, A.E. (2021b), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515.
  5. Agwa, M.A. and Eltaher, M.A. (2016). "Vibration of a carbyne nanomechanical mass sensor with surface effect", Appl. Phys. A, 122(4), 335. https://doi.org/10.1007/s00339-016-9934-9.
  6. Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
  7. Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021.
  8. Alazwari, M.A., Daikh, A.A. and Eltaher, M.A. (2022a), "Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates", Adv. Nano Res., 12(2), 117-137. https://doi.org/10.12989/anr.2022.12.2.117.
  9. Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022b), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.2.117.
  10. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020). "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555
  11. Arda, M. and Aydogdu, M. (2020), "Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass", Mech. Based Design Struct. Machines, 1-17. https://doi.org/10.1080/15397734.2020.1728548.
  12. Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Europe. Phys. J. Plus, 136(3), 1-15. https://doi.org/10.1140/epjp/s13360-021-01224-2.
  13. Aydogdu, M. and Gul, U. (2018), "Buckling analysis of double nanofibers embedded in an elastic medium using doublet mechanics theory", Compos. Struct., 202, 355-363. https://doi.org/10.1016/j.compstruct.2018.02.015.
  14. Barati, M.R. (2017), "Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory", Mater. Res. Express, 4(11), 115017. https://doi.org/10.1088/2053-1591/aa9765.
  15. Barati, M.R., Faleh, N.M. and Zenkour, A.M. (2019), "Dynamic response of nanobeams subjected to moving nanoparticles and hygro-thermal environments based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(19), 1661-1669. https://doi.org/10.1080/15376494.2018.1444234.
  16. Civalek, O., Uzun, B. and Yayli, M.O. (2022), "An eigenvalue solution for torsional vibrations of restrained porous nanorods using doublet mechanics theory", J. Brazilian Soc. Mech. Sci. Eng., 44(4), 1-15. https://doi.org/10.1007/s40430-022-03415-z.
  17. Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
  18. Dedkov, G.V. and Kyasov, A.A. (2007), "Fluctuationalelectromagnetic interaction of a moving nanoparticle with walls of a flat dielectric gap", Technical Phys. Lett., 33(1), 51-53. https://doi.org/10.1134/S1063785007010142.
  19. Ebrahimian, M. R., Imam, A. and Najafi, M. (2020), "The effect of chirality on the torsion of nanotubes embedded in an elastic medium using doublet mechanics", Indian J. Phys., 94(1), 31-45. https://doi.org/10.1007/s12648-019-01455-1.
  20. Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct., 36(2), 143-161. https://doi.org/10.12989/scs.2020.36.2.143.
  21. Eltaher, M.A. and Agwa, M.A. (2016b), "Analysis of sizedependent mechanical properties of CNTs mass sensor using energy equivalent model", Sensors Actuators A: Phys., 246, 9-17. https://doi.org/10.1016/j.sna.2016.05.009.
  22. Eltaher, M.A. and Mohamed, N. (2020), "Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics", Appl. Math. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.
  23. Eltaher, M.A., Abdelrahman, A.A. and Esen, I. (2021), "Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load", Europ. Phys. J. Plus, 136(7), 1-21. https://doi.org/10.1140/epjp/s13360-021-01682-8.
  24. Eltaher, M.A., Agwa, M.A. and Mahmoud, F.F. (2016a), "Nanobeam sensor for measuring a zeptogram mass", J. Mech. Mater. Design, 12(2), 211-221. https://doi.org/10.1007/s10999-015-9302-5.
  25. Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Comput. Mech., 4(2), 75-86. HTTPS://DOI.ORG/10.22055/JACM.2017.22579.1136.
  26. Eltaher, M.A., Almalki, T.A., Almitani, K.H. and Ahmed, K.I.E. (2019b), "Participation factor and vibration of carbon nanotube with vacancies", J. Nano Res., 57, 58-174. https://doi.org/10.4028/www.scientific.net/JNanoR.57.158.
  27. Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016c), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013.
  28. Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst., 26(2), 213-226. https://doi.org/10.12989/sss.2020.26.2.213.
  29. Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019a), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136.
  30. Esen, I. (2020), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads", J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501.
  31. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021b), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", J. Mech. Mater. Design, 17(3), 721-742. https://doi.org/10.1007/s10999-021-09555-9.
  32. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020a), "Dynamics Analysis of Timoshenko Perforated Microbeams under Moving Loads", Eng. Comput., https://doi.org/10.1007/s00366-020-01212-7.
  33. Esen, I., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A, (2022), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.1007/s00366-020-01212-7.
  34. Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021a), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Design Struct. Machines, 1-25. https://doi.org/10.1080/15397734.2021.1904255.
  35. Fatahi-Vajari, A. and Imam, A. (2016a), "Torsional vibration of single-walled carbon nanotubes using doublet mechanics", Zeitschrift fur angewandte Mathematik und Physik, 67(4), 81. https://doi.org/10.1007/s00033-016-0675-6.
  36. Fatahi-Vajari, A. and Imam, A. (2016b), "Axial vibration of singlewalled carbon nanotubes using doublet mechanics", Indian J. Phys., 90(4), 447-455. https://doi.org/10.1007/s12648-015-0775-8
  37. Ferrari, M., Granik, V.T., Imam, A. and Nadeau, J.C. (2008), Advances in Doublet Mechanics (Vol. 45), Springer Science & Business Media, New York, USA.
  38. Feynman, R.P. (1960), "There's plenty of room at the bottom", Eng. Sci., 23, 22.
  39. Froudakis, G. E. (2001), "Hydrogen interaction with single-walled carbon nanotubes: A combined quantum-mechanics/molecularmechanics study", Nano Letters, 1(4), 179-182. https://doi.org/10.1021/nl015504p.
  40. Gao, G., Cagin, T. and Goddard III, W.A. (1998), "Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes", Nanotechnology, 9(3), 184. https://doi.org/10.1088/0957-4484/9/3/007.
  41. Ghandourah, E.E., Daikh, A.A., Alhawsawi, A.M., Fallatah, O.A. and Eltaher, M.A. (2022), "Bending and Buckling of FG-GRNC Laminated Plates via Quasi-3D Nonlocal Strain Gradient Theory", Mathematics, 10(8), 1321. https://doi.org/10.3390/math10081321.
  42. Granik, V.T. (1978), "Microstructural mechanics of granular media", Technique Report IM/MGU 78-241; Institute of Mechanics of Moscow State University.
  43. Gul, U. and Aydogdu, M. (2017), "Wave propagation in double walled carbon nanotubes by using doublet mechanics theory", Physica E Low Dimensional Syst. Nanostruct., 93, 345-357. http://dx.doi.org/10.1016/j.physe.2017.07.003
  44. Gul, U. and Aydogdu, M. (2018), "Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics", Compos. Part B Eng., 137, 60-73. https://doi.org/10.1016/j.compositesb.2017.11.005.
  45. Gul, U. and Aydogdu, M. (2019), "Vibration analysis of Love nanorods using doublet mechanics theory", J. Brazilian Soc. Mech. Sci. Eng., 41(8), 351. https://doi.org/10.1007/s40430-019-1849-x.
  46. Gul, U. and Aydogdu, M. (2020), "Vibration of layered nanobeams with periodic nanostructures", Mech. Based Design Struct. Machines, 1-22. https://doi.org/10.1080/15397734.2020.1848592.
  47. Gul, U. and Aydogdu, M. (2021a), "Dynamic analysis of functionally graded beams with periodic nanostructures", Compos. Struct., 257, 113169. https://doi.org/10.1016/j.compstruct.2020.113169.
  48. Gul, U. and Aydogdu, M. (2021b), "A micro/nano-scale Timoshenko-Ehrenfest beam model for bending, buckling and vibration analyses based on doublet mechanics theory", European J. Mech. A/Solids, 86, 104199. https://doi.org/10.1016/j.euromechsol.2020.104199.
  49. Gul, U., Aydogdu, M. and Gaygusuzoglu, G. (2017), "Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics", Compos. Struct., 160, 1268-1278. http://dx.doi.org/10.1016/j.compstruct.2016.11.023.
  50. Gul, U., Aydogdu, M. and Gaygusuzoglu, G. (2018), "Vibration and buckling analysis of nanotubes (nanofibers) embedded in an elastic medium using Doublet Mechanics", J. Eng. Math., 109(1), 85-111. https://doi.org/10.1007/s10665-017-9908-8.
  51. Hou, Z., Xia, H., Wang, Y., Zhang, Y. and Zhang, T. (2015), "Dynamic analysis and model test on steel-concrete composite beams under moving loads", Steel Compos. Struct., 18(3), 565-582. https://doi.org/10.12989/scs.2015.18.3.565.
  52. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  53. Jena, S.K., Chakraverty, S., Malikan, M. and Tornabene, F. (2020), "Effects of surface energy and surface residual stresses on vibro-thermal analysis of chiral, zigzag, and armchair types of SWCNTs using refined beam theory", Mech. Based Design Struct. Machines, 1-15. https://doi.org/10.1080/15397734.2020.1754239.
  54. Ke, L.L. and Wang, Y.S. (2011), "Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory", Physica E Low Dimensional Syst. Nanostruct., 43(5), 1031-1039. https://doi.org/10.1016/j.physe.2010.12.010.
  55. Khare, R., Mielke, S.L., Paci, J.T., Zhang, S., Ballarini, R., Schatz, G.C. and Belytschko, T. (2007), "Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets", Phys. Rev. B, 75(7), 075412. https://doi.org/10.1103/PhysRevB.75.075412.
  56. Koc, H. and Tufekci, E. (2022), "Three-Dimensional state with doublet mechanics", J. Aerosp. Mech. Eng., 16(1), 1-5.
  57. Kojic, M., Vlastelica, I., Decuzzi, P., Granik, V. T. and Ferrari, M. (2011), "A finite element formulation for the doublet mechanics modeling of microstructural materials", Comput. Methods Appl. Mech. Eng., 200(13-16), 1446-1454. https://doi.org/10.1016/j.cma.2011.01.001.
  58. Lei, X.W., Natsuki, T., Shi, J.X. and Ni, Q.Q. (2012), "Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model", Compos. Part B Eng., 43(1), 64-69. https://doi.org/10.1016/j.compositesb.2011.04.032.
  59. Lei, Z.X. and Liew, K.M. (2019), "Multiscale MDFEM for modeling mechanical behavior of carbon nanotubes", Appl. Math. Modelling, 69, 466-492. https://doi.org/10.1016/j.apm.2019.01.007.
  60. Li, L. and Hu, Y. (2016), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Comput. Mater. Sci., 112, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044.
  61. Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E Low Dimensional Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028.
  62. Li, Y., Wang, S., Wang, Q. and Xing, M. (2018), "Enhancement of fracture properties of polymer composites reinforced by carbon nanotubes: a molecular dynamics study", Carbon, 129, 504-509. https://doi.org/10.1016/j.carbon.2017.12.029.
  63. Liew, K.M., He, X.Q. and Wong, C.H. (2004), "On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation", Acta Materialia, 52(9), 2521-2527. https://doi.org/10.1016/j.actamat.2004.01.043.
  64. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  65. Mathews, J.H. and Fink, K.D. (2004), Numerical methods using MATLAB (Vol. 4), Pearson Prentice Hall, Upper Saddle River, NJ, USA.
  66. Matsuda, Y., Deng, W.Q. and Goddard III, W.A. (2010), "Contact resistance for "end-contacted" metal- graphene and metal-nanotube interfaces from quantum mechanics", J. Phys. Chem. C, 114(41), 17845-17850. https://doi.org/10.1021/jp806437y.
  67. Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A. W., Othman, R., Almitani, K. H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Free vibration of fg-cntrcs nanoplates/shells with temperature-dependent properties", Mathematics, 10(4), 583. https://doi.org/10.3390/math10040583.
  68. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. https://doi.org/10.12989/scs.2020.35.6.765.
  69. Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
  70. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2021), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4), 2823-2836. https://doi.org/10.1007/s00366-020-00976-2.
  71. Mohammadian, M. and Hosseini, S.M. (2022), "A size-dependent differential quadrature element model for vibration analysis of FG CNT reinforced composite microrods based on the higher order Love-Bishop rod model and the nonlocal strain gradient theory", Eng. Analysis Boundary Elements, 138, 235-252. https://doi.org/10.1016/j.enganabound.2022.02.017.
  72. Mylvaganam, K. and Zhang, L.C. (2004), "Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes", Carbon, 42(10), 2025-2032. https://doi.org/10.1016/j.carbon.2004.04.004.
  73. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Division, 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
  74. Nguyen, D.K., Nguyen, Q.H., Tran, T.T., (2017), "Vibration of bidimensional functionally graded Timoshenko beams excited by a moving load", Acta Mechanica, 228, 141-155. https://doi.org/10.1007/s00707-016-1705-3.
  75. Nguyen, V.X., Lieu, Q.X., Le, T.A., Nguyen, T.D., Suzuki, T. and Luong, V.H. (2022), "A novel coupled finite element method for hydroelastic analysis of FG-CNTRC floating plates under moving loads", Steel Compos. Struct., 42(2), 243-256. https://doi.org/10.12989/scs.2022.42.2.243.
  76. Otsuka, K., Fang, N., Yamashita, D., Taniguchi, T., Watanabe, K. and Kato, Y.K. (2021), "Deterministic transfer of optical-quality carbon nanotubes for atomically defined technology", Nature Communications, 12(1), 1-8. https://doi.org/10.1038/s41467-021-23413-4.
  77. Ozarpa, C. and Esen, I. (2020), "Modelling the dynamics of a nanocapillary system with a moving mass using the non-local strain gradient theory", Math. Methods Appl. Sci., https://doi.org/10.1002/mma.6812.
  78. Pirmohammadi, A.A., Pourseifi, M., Rahmani, O. and Hoseini, S. A.H. (2014), "Modeling and active vibration suppression of a single-walled carbon nanotube subjected to a moving harmonic load based on a nonlocal elasticity theory", Appl. Phys. A, 117(3), 1547-1555. https://doi.org/10.1007/s00339-014-8592-z.
  79. Rapaport, D.C. (1980), "The event scheduling problem in molecular dynamic simulation", J. Comput. Phys., 34(2), 184-201. https://doi.org/10.1016/0021-9991(80)90104-7.
  80. Roudbari, M.A., Jorshari, T. D., Arani, A. G., Lu, C. and Rabczuk, T. (2020), "Transient responses of two mutually interacting single-walled boron nitride nanotubes induced by a moving nanoparticle", European J. Mech. A/Solids, 103978. https://doi.org/10.1016/j.euromechsol.2020.103978.
  81. Shanab, R.A., Attia, M.A., Mohamed, S.A. and Mohamed, N.A. (2020), "Effect of microstructure and surface energy on the static and dynamic characteristics of FG Timoshenko nanobeam embedded in an elastic medium", J. Nano Res., 61, 97-117. https://doi.org/10.4028/www.scientific.net/JNanoR.61.97.
  82. Shi, J. and Teng, X. (2021), "Numerical forced vibration analysis of compositionally gradient porous cylindrical microshells under moving load and thermal environment", Steel Compos. Struct., 40(6), 893-902. https://doi.org/10.12989/scs.2021.40.6.893.
  83. Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", J. Eng. Sci., 48(12), 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027.
  84. Simsek, M. (2011a), "Forced vibration of an embedded singlewalled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
  85. Simsek, M. (2011b), "Forced vibration of an embedded singlewalled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
  86. Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90, 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024.
  87. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
  88. Twinkle, C.M. and Pitchaimani, J. (2022), "A semi-analytical nonlocal elasticity model for static stability and vibration behaviour of agglomerated CNTs reinforced nano cylindrical panel under non-uniform edge loads", Appl. Math. Modelling, 103, 68-90. https://doi.org/10.1016/j.apm.2021.10.027.
  89. Wu, Y., Zhang, X., Leung, A.Y.T. and Zhong, W. (2006), "An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes", Thin-walled Struct., 44(6), 667-676. https://doi.org/10.1016/j.tws.2006.05.003.
  90. Yayli, M.O. (2011), "Weak formulation of finite element method for nonlocal beams using additional boundary conditions", J. Comput. Theoretical Nanosci., 8(11), 2173-2180. https://doi.org/10.1166/jctn.2011.1940.
  91. Yayli, M.O. (2013), "Torsion of nonlocal bars with equilateral triangle cross sections", J. Comput. Theoretical Nanosci., 10(2), 376-379. https://doi.org/10.1166/jctn.2013.2707.
  92. Yayli, M.O. and Erdem Cercevik, A. (2015), "Axial vibration analysis of cracked nanorods with arbitrary boundary conditions", J. Vibroeng., 17(6), 2907-2921.
  93. Yayli, M.O. (2017), "A compact analytical method for vibration of micro-sized beams with different boundary conditions", Mech. Adv. Mater. Struct., 24(6), 496-508. https://doi.org/10.1080/15376494.2016.1143989.
  94. Yayli, M.O. (2018a), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-599. https://doi.org/10.1049/mnl.2017.0751.
  95. Yayli, M.O. (2018b), "On the torsional vibrations of restrained nanotubes embedded in an elastic medium", J. Brazilian Soc. Mech. Sci. Eng., 40(9), 1-12. https://doi.org/10.1007/s40430-018-1346-7.
  96. Yayli, M.O. (2019), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14(2), 158-162. https://doi.org/10.1049/mnl.2018.5428.
  97. Yayli, M.O. and Asa, E. (2020), "Longitudinal vibration of carbon nanotubes with elastically restrained ends using doublet mechanics", Microsyst. Technol., 26(2), 499-508. https://doi.org/10.1007/s00542-019-04512-1.
  98. Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Physical Review B, 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404
  99. Zhu, X., Zhang, H., Lu, G. and Zhou, H. (2022), "Nonlinear impulsive and vibration analysis of nonlocal FG-CNT reinforced sandwich plate by considering agglomerations", European J. Mech. A/Solids, 92, 104485. https://doi.org/10.1016/j.euromechsol.2021.104485.