References
- Abdelrahman, A.A. and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8.
- Abdelrahman, A.A., Esen, I., Daikh, A.A. and Eltaher, M.A. (2021a), "Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load", Mech. Based Design Struct. Machines, 1-24. https://doi.org/10.1080/15397734.2021.1999263.
- Abdelrahman, A.A., Esen, I., Ozarpa, C. and Eltaher, M.A. (2021c). "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Modelling, 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.
- Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M.A. and Assie, A.E. (2021b), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515.
- Agwa, M.A. and Eltaher, M.A. (2016). "Vibration of a carbyne nanomechanical mass sensor with surface effect", Appl. Phys. A, 122(4), 335. https://doi.org/10.1007/s00339-016-9934-9.
- Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/scs.2020.35.6.729.
- Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021.
- Alazwari, M.A., Daikh, A.A. and Eltaher, M.A. (2022a), "Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates", Adv. Nano Res., 12(2), 117-137. https://doi.org/10.12989/anr.2022.12.2.117.
- Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022b), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.2.117.
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020). "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555
- Arda, M. and Aydogdu, M. (2020), "Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass", Mech. Based Design Struct. Machines, 1-17. https://doi.org/10.1080/15397734.2020.1728548.
- Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Europe. Phys. J. Plus, 136(3), 1-15. https://doi.org/10.1140/epjp/s13360-021-01224-2.
- Aydogdu, M. and Gul, U. (2018), "Buckling analysis of double nanofibers embedded in an elastic medium using doublet mechanics theory", Compos. Struct., 202, 355-363. https://doi.org/10.1016/j.compstruct.2018.02.015.
- Barati, M.R. (2017), "Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory", Mater. Res. Express, 4(11), 115017. https://doi.org/10.1088/2053-1591/aa9765.
- Barati, M.R., Faleh, N.M. and Zenkour, A.M. (2019), "Dynamic response of nanobeams subjected to moving nanoparticles and hygro-thermal environments based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct., 26(19), 1661-1669. https://doi.org/10.1080/15376494.2018.1444234.
- Civalek, O., Uzun, B. and Yayli, M.O. (2022), "An eigenvalue solution for torsional vibrations of restrained porous nanorods using doublet mechanics theory", J. Brazilian Soc. Mech. Sci. Eng., 44(4), 1-15. https://doi.org/10.1007/s40430-022-03415-z.
- Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
- Dedkov, G.V. and Kyasov, A.A. (2007), "Fluctuationalelectromagnetic interaction of a moving nanoparticle with walls of a flat dielectric gap", Technical Phys. Lett., 33(1), 51-53. https://doi.org/10.1134/S1063785007010142.
- Ebrahimian, M. R., Imam, A. and Najafi, M. (2020), "The effect of chirality on the torsion of nanotubes embedded in an elastic medium using doublet mechanics", Indian J. Phys., 94(1), 31-45. https://doi.org/10.1007/s12648-019-01455-1.
- Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct., 36(2), 143-161. https://doi.org/10.12989/scs.2020.36.2.143.
- Eltaher, M.A. and Agwa, M.A. (2016b), "Analysis of sizedependent mechanical properties of CNTs mass sensor using energy equivalent model", Sensors Actuators A: Phys., 246, 9-17. https://doi.org/10.1016/j.sna.2016.05.009.
- Eltaher, M.A. and Mohamed, N. (2020), "Nonlinear stability and vibration of imperfect CNTs by Doublet mechanics", Appl. Math. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.
- Eltaher, M.A., Abdelrahman, A.A. and Esen, I. (2021), "Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load", Europ. Phys. J. Plus, 136(7), 1-21. https://doi.org/10.1140/epjp/s13360-021-01682-8.
- Eltaher, M.A., Agwa, M.A. and Mahmoud, F.F. (2016a), "Nanobeam sensor for measuring a zeptogram mass", J. Mech. Mater. Design, 12(2), 211-221. https://doi.org/10.1007/s10999-015-9302-5.
- Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Comput. Mech., 4(2), 75-86. HTTPS://DOI.ORG/10.22055/JACM.2017.22579.1136.
- Eltaher, M.A., Almalki, T.A., Almitani, K.H. and Ahmed, K.I.E. (2019b), "Participation factor and vibration of carbon nanotube with vacancies", J. Nano Res., 57, 58-174. https://doi.org/10.4028/www.scientific.net/JNanoR.57.158.
- Eltaher, M.A., El-Borgi, S. and Reddy, J.N. (2016c), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013.
- Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst., 26(2), 213-226. https://doi.org/10.12989/sss.2020.26.2.213.
- Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019a), "Postbuckling of curved carbon nanotubes using energy equivalent model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/JNanoR.57.136.
- Esen, I. (2020), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads", J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021b), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", J. Mech. Mater. Design, 17(3), 721-742. https://doi.org/10.1007/s10999-021-09555-9.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020a), "Dynamics Analysis of Timoshenko Perforated Microbeams under Moving Loads", Eng. Comput., https://doi.org/10.1007/s00366-020-01212-7.
- Esen, I., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A, (2022), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.1007/s00366-020-01212-7.
- Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021a), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Design Struct. Machines, 1-25. https://doi.org/10.1080/15397734.2021.1904255.
- Fatahi-Vajari, A. and Imam, A. (2016a), "Torsional vibration of single-walled carbon nanotubes using doublet mechanics", Zeitschrift fur angewandte Mathematik und Physik, 67(4), 81. https://doi.org/10.1007/s00033-016-0675-6.
- Fatahi-Vajari, A. and Imam, A. (2016b), "Axial vibration of singlewalled carbon nanotubes using doublet mechanics", Indian J. Phys., 90(4), 447-455. https://doi.org/10.1007/s12648-015-0775-8
- Ferrari, M., Granik, V.T., Imam, A. and Nadeau, J.C. (2008), Advances in Doublet Mechanics (Vol. 45), Springer Science & Business Media, New York, USA.
- Feynman, R.P. (1960), "There's plenty of room at the bottom", Eng. Sci., 23, 22.
- Froudakis, G. E. (2001), "Hydrogen interaction with single-walled carbon nanotubes: A combined quantum-mechanics/molecularmechanics study", Nano Letters, 1(4), 179-182. https://doi.org/10.1021/nl015504p.
- Gao, G., Cagin, T. and Goddard III, W.A. (1998), "Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes", Nanotechnology, 9(3), 184. https://doi.org/10.1088/0957-4484/9/3/007.
- Ghandourah, E.E., Daikh, A.A., Alhawsawi, A.M., Fallatah, O.A. and Eltaher, M.A. (2022), "Bending and Buckling of FG-GRNC Laminated Plates via Quasi-3D Nonlocal Strain Gradient Theory", Mathematics, 10(8), 1321. https://doi.org/10.3390/math10081321.
- Granik, V.T. (1978), "Microstructural mechanics of granular media", Technique Report IM/MGU 78-241; Institute of Mechanics of Moscow State University.
- Gul, U. and Aydogdu, M. (2017), "Wave propagation in double walled carbon nanotubes by using doublet mechanics theory", Physica E Low Dimensional Syst. Nanostruct., 93, 345-357. http://dx.doi.org/10.1016/j.physe.2017.07.003
- Gul, U. and Aydogdu, M. (2018), "Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics", Compos. Part B Eng., 137, 60-73. https://doi.org/10.1016/j.compositesb.2017.11.005.
- Gul, U. and Aydogdu, M. (2019), "Vibration analysis of Love nanorods using doublet mechanics theory", J. Brazilian Soc. Mech. Sci. Eng., 41(8), 351. https://doi.org/10.1007/s40430-019-1849-x.
- Gul, U. and Aydogdu, M. (2020), "Vibration of layered nanobeams with periodic nanostructures", Mech. Based Design Struct. Machines, 1-22. https://doi.org/10.1080/15397734.2020.1848592.
- Gul, U. and Aydogdu, M. (2021a), "Dynamic analysis of functionally graded beams with periodic nanostructures", Compos. Struct., 257, 113169. https://doi.org/10.1016/j.compstruct.2020.113169.
- Gul, U. and Aydogdu, M. (2021b), "A micro/nano-scale Timoshenko-Ehrenfest beam model for bending, buckling and vibration analyses based on doublet mechanics theory", European J. Mech. A/Solids, 86, 104199. https://doi.org/10.1016/j.euromechsol.2020.104199.
- Gul, U., Aydogdu, M. and Gaygusuzoglu, G. (2017), "Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics", Compos. Struct., 160, 1268-1278. http://dx.doi.org/10.1016/j.compstruct.2016.11.023.
- Gul, U., Aydogdu, M. and Gaygusuzoglu, G. (2018), "Vibration and buckling analysis of nanotubes (nanofibers) embedded in an elastic medium using Doublet Mechanics", J. Eng. Math., 109(1), 85-111. https://doi.org/10.1007/s10665-017-9908-8.
- Hou, Z., Xia, H., Wang, Y., Zhang, Y. and Zhang, T. (2015), "Dynamic analysis and model test on steel-concrete composite beams under moving loads", Steel Compos. Struct., 18(3), 565-582. https://doi.org/10.12989/scs.2015.18.3.565.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
- Jena, S.K., Chakraverty, S., Malikan, M. and Tornabene, F. (2020), "Effects of surface energy and surface residual stresses on vibro-thermal analysis of chiral, zigzag, and armchair types of SWCNTs using refined beam theory", Mech. Based Design Struct. Machines, 1-15. https://doi.org/10.1080/15397734.2020.1754239.
- Ke, L.L. and Wang, Y.S. (2011), "Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory", Physica E Low Dimensional Syst. Nanostruct., 43(5), 1031-1039. https://doi.org/10.1016/j.physe.2010.12.010.
- Khare, R., Mielke, S.L., Paci, J.T., Zhang, S., Ballarini, R., Schatz, G.C. and Belytschko, T. (2007), "Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets", Phys. Rev. B, 75(7), 075412. https://doi.org/10.1103/PhysRevB.75.075412.
- Koc, H. and Tufekci, E. (2022), "Three-Dimensional state with doublet mechanics", J. Aerosp. Mech. Eng., 16(1), 1-5.
- Kojic, M., Vlastelica, I., Decuzzi, P., Granik, V. T. and Ferrari, M. (2011), "A finite element formulation for the doublet mechanics modeling of microstructural materials", Comput. Methods Appl. Mech. Eng., 200(13-16), 1446-1454. https://doi.org/10.1016/j.cma.2011.01.001.
- Lei, X.W., Natsuki, T., Shi, J.X. and Ni, Q.Q. (2012), "Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model", Compos. Part B Eng., 43(1), 64-69. https://doi.org/10.1016/j.compositesb.2011.04.032.
- Lei, Z.X. and Liew, K.M. (2019), "Multiscale MDFEM for modeling mechanical behavior of carbon nanotubes", Appl. Math. Modelling, 69, 466-492. https://doi.org/10.1016/j.apm.2019.01.007.
- Li, L. and Hu, Y. (2016), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Comput. Mater. Sci., 112, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044.
- Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E Low Dimensional Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028.
- Li, Y., Wang, S., Wang, Q. and Xing, M. (2018), "Enhancement of fracture properties of polymer composites reinforced by carbon nanotubes: a molecular dynamics study", Carbon, 129, 504-509. https://doi.org/10.1016/j.carbon.2017.12.029.
- Liew, K.M., He, X.Q. and Wong, C.H. (2004), "On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation", Acta Materialia, 52(9), 2521-2527. https://doi.org/10.1016/j.actamat.2004.01.043.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Mathews, J.H. and Fink, K.D. (2004), Numerical methods using MATLAB (Vol. 4), Pearson Prentice Hall, Upper Saddle River, NJ, USA.
- Matsuda, Y., Deng, W.Q. and Goddard III, W.A. (2010), "Contact resistance for "end-contacted" metal- graphene and metal-nanotube interfaces from quantum mechanics", J. Phys. Chem. C, 114(41), 17845-17850. https://doi.org/10.1021/jp806437y.
- Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A. W., Othman, R., Almitani, K. H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Free vibration of fg-cntrcs nanoplates/shells with temperature-dependent properties", Mathematics, 10(4), 583. https://doi.org/10.3390/math10040583.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. https://doi.org/10.12989/scs.2020.35.6.765.
- Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
- Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2021), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4), 2823-2836. https://doi.org/10.1007/s00366-020-00976-2.
- Mohammadian, M. and Hosseini, S.M. (2022), "A size-dependent differential quadrature element model for vibration analysis of FG CNT reinforced composite microrods based on the higher order Love-Bishop rod model and the nonlocal strain gradient theory", Eng. Analysis Boundary Elements, 138, 235-252. https://doi.org/10.1016/j.enganabound.2022.02.017.
- Mylvaganam, K. and Zhang, L.C. (2004), "Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes", Carbon, 42(10), 2025-2032. https://doi.org/10.1016/j.carbon.2004.04.004.
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Division, 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
- Nguyen, D.K., Nguyen, Q.H., Tran, T.T., (2017), "Vibration of bidimensional functionally graded Timoshenko beams excited by a moving load", Acta Mechanica, 228, 141-155. https://doi.org/10.1007/s00707-016-1705-3.
- Nguyen, V.X., Lieu, Q.X., Le, T.A., Nguyen, T.D., Suzuki, T. and Luong, V.H. (2022), "A novel coupled finite element method for hydroelastic analysis of FG-CNTRC floating plates under moving loads", Steel Compos. Struct., 42(2), 243-256. https://doi.org/10.12989/scs.2022.42.2.243.
- Otsuka, K., Fang, N., Yamashita, D., Taniguchi, T., Watanabe, K. and Kato, Y.K. (2021), "Deterministic transfer of optical-quality carbon nanotubes for atomically defined technology", Nature Communications, 12(1), 1-8. https://doi.org/10.1038/s41467-021-23413-4.
- Ozarpa, C. and Esen, I. (2020), "Modelling the dynamics of a nanocapillary system with a moving mass using the non-local strain gradient theory", Math. Methods Appl. Sci., https://doi.org/10.1002/mma.6812.
- Pirmohammadi, A.A., Pourseifi, M., Rahmani, O. and Hoseini, S. A.H. (2014), "Modeling and active vibration suppression of a single-walled carbon nanotube subjected to a moving harmonic load based on a nonlocal elasticity theory", Appl. Phys. A, 117(3), 1547-1555. https://doi.org/10.1007/s00339-014-8592-z.
- Rapaport, D.C. (1980), "The event scheduling problem in molecular dynamic simulation", J. Comput. Phys., 34(2), 184-201. https://doi.org/10.1016/0021-9991(80)90104-7.
- Roudbari, M.A., Jorshari, T. D., Arani, A. G., Lu, C. and Rabczuk, T. (2020), "Transient responses of two mutually interacting single-walled boron nitride nanotubes induced by a moving nanoparticle", European J. Mech. A/Solids, 103978. https://doi.org/10.1016/j.euromechsol.2020.103978.
- Shanab, R.A., Attia, M.A., Mohamed, S.A. and Mohamed, N.A. (2020), "Effect of microstructure and surface energy on the static and dynamic characteristics of FG Timoshenko nanobeam embedded in an elastic medium", J. Nano Res., 61, 97-117. https://doi.org/10.4028/www.scientific.net/JNanoR.61.97.
- Shi, J. and Teng, X. (2021), "Numerical forced vibration analysis of compositionally gradient porous cylindrical microshells under moving load and thermal environment", Steel Compos. Struct., 40(6), 893-902. https://doi.org/10.12989/scs.2021.40.6.893.
- Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", J. Eng. Sci., 48(12), 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027.
- Simsek, M. (2011a), "Forced vibration of an embedded singlewalled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
- Simsek, M. (2011b), "Forced vibration of an embedded singlewalled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
- Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90, 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024.
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
- Twinkle, C.M. and Pitchaimani, J. (2022), "A semi-analytical nonlocal elasticity model for static stability and vibration behaviour of agglomerated CNTs reinforced nano cylindrical panel under non-uniform edge loads", Appl. Math. Modelling, 103, 68-90. https://doi.org/10.1016/j.apm.2021.10.027.
- Wu, Y., Zhang, X., Leung, A.Y.T. and Zhong, W. (2006), "An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes", Thin-walled Struct., 44(6), 667-676. https://doi.org/10.1016/j.tws.2006.05.003.
- Yayli, M.O. (2011), "Weak formulation of finite element method for nonlocal beams using additional boundary conditions", J. Comput. Theoretical Nanosci., 8(11), 2173-2180. https://doi.org/10.1166/jctn.2011.1940.
- Yayli, M.O. (2013), "Torsion of nonlocal bars with equilateral triangle cross sections", J. Comput. Theoretical Nanosci., 10(2), 376-379. https://doi.org/10.1166/jctn.2013.2707.
- Yayli, M.O. and Erdem Cercevik, A. (2015), "Axial vibration analysis of cracked nanorods with arbitrary boundary conditions", J. Vibroeng., 17(6), 2907-2921.
- Yayli, M.O. (2017), "A compact analytical method for vibration of micro-sized beams with different boundary conditions", Mech. Adv. Mater. Struct., 24(6), 496-508. https://doi.org/10.1080/15376494.2016.1143989.
- Yayli, M.O. (2018a), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-599. https://doi.org/10.1049/mnl.2017.0751.
- Yayli, M.O. (2018b), "On the torsional vibrations of restrained nanotubes embedded in an elastic medium", J. Brazilian Soc. Mech. Sci. Eng., 40(9), 1-12. https://doi.org/10.1007/s40430-018-1346-7.
- Yayli, M.O. (2019), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14(2), 158-162. https://doi.org/10.1049/mnl.2018.5428.
- Yayli, M.O. and Asa, E. (2020), "Longitudinal vibration of carbon nanotubes with elastically restrained ends using doublet mechanics", Microsyst. Technol., 26(2), 499-508. https://doi.org/10.1007/s00542-019-04512-1.
- Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Physical Review B, 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404
- Zhu, X., Zhang, H., Lu, G. and Zhou, H. (2022), "Nonlinear impulsive and vibration analysis of nonlocal FG-CNT reinforced sandwich plate by considering agglomerations", European J. Mech. A/Solids, 92, 104485. https://doi.org/10.1016/j.euromechsol.2021.104485.