DOI QR코드

DOI QR Code

A Concise Review of High Performance PPS Composites using Various Fillers

  • Ahn, Seonghyeon (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Park, Chanil (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Kim, Yong Seok (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Yoo, Youngjae (Department of Advanced Materials Engineering, Chung-Ang University)
  • Received : 2022.07.04
  • Accepted : 2022.08.01
  • Published : 2022.09.30

Abstract

Composites based on engineering thermoplastics exhibit excellent mechanical and thermal properties and simple processing and reprocessing attributes, and are widely used in the aerospace, three-dimensional (3D) printing, and automobile industries. Polyphenylene sulfide (PPS) is one of the most desirable engineering thermoplastics, owing to its superior thermal performance, inherent flame retardancy resulting from the presence of sulfur in its backbone structure, chemical resistance, and satisfactory electrical properties. However, pure PPS resin has limited applicability owing to its brittleness. To compensate for these shortcomings, various filler materials are frequently used in the manufacture of PPS composites. In this review, we would like to present the correlation between the structure and physical properties of PPS composite materials using various fillers.

Keywords

Acknowledgement

본 연구는 산업통상자원부 소재부품기술개발사업(과제번호: 20011165) 및 중앙대학교 연구장학금의 지원을 받아 진행되었으며 이에 감사드립니다.

References

  1. V. C. Vives, J. S. Dix, and D. G. Brady, "Polyphenylene Sulfide (PPS) in Harsh Environments", ACS Symp. Ser., 65 (1983).
  2. H. W. Hill and D. G. Brady, "Properties, environmental stability, and molding characteristics of polyphenylene sulfide", Polym. Eng. Sci., 16, 831 (1976). https://doi.org/10.1002/pen.760161211
  3. N. S. J. Christopher, J. L. Cotter, G. J. Knight, and W. W. Wright, "Thermal degradation of poly(phenylene sulfide) and perfluoropoly(phenylene sulfide)", J. Appl. Polym. Sci., 12, 863 (1968). https://doi.org/10.1002/app.1968.070120421
  4. J. Masamoto and K. Kubo, "Elastomer-Toughened Poly- (Phenylene Sulfide)", Polym. Eng. Sci., 36, 265 (1996). https://doi.org/10.1002/pen.10412
  5. W. Luo, et al. "Enhanced mechanical and tribological properties in polyphenylene sulfide/polytetrafluoroethylene composites reinforced by short carbon fiber", Compos. Part B Eng., 91, 579 (2016). https://doi.org/10.1016/j.compositesb.2016.01.036
  6. P. Zuo, J. Fitoussi, M. Shirinbayan, F. Bakir, and A. Tcharkhtchi, "Thermal aging effects on overall mechanical behavior of short glass fiber-reinforced polyphenylene sulfide composites", Polym. Eng. Sci., 59, 765 (2019). https://doi.org/10.1002/pen.25003
  7. D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, "Fiber-reinforced polymer composites: Manufacturing, properties, and applications", Polymers (Basel), 11, (2019). https://doi.org/10.3390/polym11030481
  8. L. C. M. Barbosa, S. D. B. de Souza, E. C. Botelho, G. M. Candido, and M. C. Rezende, "Fractographic evaluation of welded joints of PPS/glass fiber thermoplastic composites", Eng. Fail. Anal., 102, 60 (2019). https://doi.org/10.1016/j.engfailanal.2019.04.032
  9. P. Mitschang, M. Blinzler, and A. Woginger, "Processing technologies for continuous fibre reinforced thermoplastics with novel polymer blends", Compos. Sci. Technol., 63, 2099 (2003). https://doi.org/10.1016/S0266-3538(03)00107-6
  10. J. F. Fan, W. K. Ding, J. F. Zhang, Y. L. He, and W. Q. Tao, "A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving", Int. J. Heat Mass Transf., 52, 33 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.006
  11. H. Yu, et al. "Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material", J. Appl. Polym. Sci., 124, 669 (2012). https://doi.org/10.1002/app.35016
  12. B. Chunyi Zhi, et al. "Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties", Adv. Mater, 21, 2889 (2009). https://doi.org/10.1002/adma.200900323
  13. C. Sevik, A. Kinaci, J. B. Haskins, and T. CagIn, "Characterization of thermal transport in low-dimensional boron nitride nanostructures", Phys. Rev. B - Condens. Matter Mater. Phys., 84, 1 (2011).
  14. I. Jo, et al. "Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride", Nano Lett., 13, 550 (2013). https://doi.org/10.1021/nl304060g
  15. J. Gu, et al. "Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers", Compos. Part A Appl. Sci. Manuf., 95, 267 (2017). https://doi.org/10.1016/j.compositesa.2017.01.019
  16. K. Kim and J. Kim, "Core-shell structured BN/PPS composite film for high thermal conductivity with low filler concentration", Compos. Sci. Technol., 134, 209 (2016). https://doi.org/10.1016/j.compscitech.2016.08.024
  17. Y. Jiang, Y. Liu, P. Min, and G. Sui, "BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities", Compos. Sci. Technol., 144, 63 (2017). https://doi.org/10.1016/j.compscitech.2017.03.023
  18. Y. Shi, et al. "Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure", J. Mater. Sci. Technol., 99, 239 (2022). https://doi.org/10.1016/j.jmst.2021.05.043
  19. J. Gu, et al. "Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites", RSC Adv., 4, 22101 (2014). https://doi.org/10.1039/c4ra01761g
  20. S. Y. Pak, S. Y. Kim, D. Lee, and Y. S. Song, "Micro-Macroscopic coupled modeling for the prediction of synergistic improvement on the thermal conductivity of boron nitride and multi-walled carbon nanotube reinforced composites", Compos. Part A Appl. Sci. Manuf., 148, 106474 (2021). https://doi.org/10.1016/j.compositesa.2021.106474
  21. L. Zhao, et al. "High-performance polyphenylene sulfide composites with ultra-high content of glass fiber fabrics", Compos. Part B Eng., 174, 106790 (2019). https://doi.org/10.1016/j.compositesb.2019.05.001
  22. L. Zhao, et al. "Fabrication and characterization of polyphenylene sulfide composites with ultra-high content of carbon fiber fabrics", Adv. Compos. Hybrid Mater, 2, 481 (2019). https://doi.org/10.1007/s42114-019-00111-w
  23. Y. Shi, S. Zhou, H. Zou, M. Liang, and Y. Chen, "In situ micro-fibrillization and post annealing to significantly improve the tribological properties of polyphenylene sulfide/ polyamide 66/polytetrafluoroethylene composites", Compos. Part B Eng., 216, 108841 (2021). https://doi.org/10.1016/j.compositesb.2021.108841
  24. Y. Shi, et al. "Interlocking Structure Formed by Multiscale Carbon Fiber-Polytetrafluoroethylene Fiber Hybrid Significantly Enhances the Friction and Wear Properties of Polyphenylene Sulfide Based Composites", Ind. Eng. Chem. Res., 58, 16541 (2019). https://doi.org/10.1021/acs.iecr.9b02046
  25. Y. Wu, et al. "Improved mechanical properties of graphene oxide/short carbon fiber-polyphenylene sulfide composites", Polym. Compos., 40, 3866 (2019). https://doi.org/10.1002/pc.25245
  26. H. Hao. Ren, et al. "Effect of carboxylic polyphenylene sulfide on the micromechanical properties of polyphenylene sulfide/carbon fiber composites", Compos. Sci. Technol., 146, 65 (2017). https://doi.org/10.1016/j.compscitech.2017.03.021
  27. K. Zhang, et al. "Effect of aminated polyphenylene sulfide on the mechanical properties of short carbon fiber reinforced polyphenylene sulfide composites", Compos. Sci. Technol., 98, 57 (2014). https://doi.org/10.1016/j.compscitech.2014.04.020
  28. B. U. Durmaz and A. Aytac, "Characterization of carbon fiber-reinforced poly(phenylene sulfide) composites prepared with various compatibilizers", https://doi.org/10.1177/0021998319859063 54, 89 (2019).