DOI QR코드

DOI QR Code

Effect of Multi-functional Group of Acrylate Crosslinker on Properties of Waterborne Polyurethane-acrylate

  • Moon, Seok Kyu (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Eun-jin (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Kwon, Yong Rok (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Jung Soo (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Hae Chan (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Park, Han Soo (School of Intergrative Engineering, Chung-Ang University) ;
  • Kim, Dong Hyun (Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH))
  • Received : 2022.09.08
  • Accepted : 2022.09.27
  • Published : 2022.09.30

Abstract

Waterborne polyurethane-acrylate(WPUA) dispersions were prepared by surfactant-free emulsion polymerization in a two-step process. In the first step, polytetrahydrofuran, isophorone diisocyanate, dimethylol proponic acid, and 2-hydroxyethyl methacrylate were used to synthesize a vinyl-terminated polyurethane prepolymer. In the second step, styrene, methyl methacrylate, butyl acrylate, and different multi-functional crosslinkers were copolymerized. 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, and pentaerythritol tetraacrylate were used as the crosslinkers, and their effect on the mechanical and thermal properties of WPUA was investigated. Overall, as the number of functional groups of the cross-linker increased, the gel fraction improved to 79.26%, the particle size increased from 75.9 nm to 148.7 nm, and the tensile strength was improved from 5.86 MPa to 12.40 MPa. In thermal properties, the glass transition temperature and decomposition temperature increased by 9.9℃ and 18℃, respectively. The chemical structures of the WPUA dispersions were characterized by Fourier-transform infrared spectroscopy. The synthesized WPUA has high potential for applications such as coatings, leather coatings, adhesives, and wood finishing.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 지원을 받는 소재부품기술개발사업(20010566, 수송기기용 VOC-free 수계 투명 코팅 바니쉬 소재 및 공정기술 개발)을 통해 수행되었습니다

References

  1. A. Javadi, A. Cobaj, and M. D. Soucek, "Handbook of waterborne coatings", pp. 303-344, Elsevier, Amsterdam, 2020.
  2. H. M. C. C. Somarathna, S. N. Raman, D. Mohotti, A. A. Mutalib, and K. H. Badri, "The use of polyurethane for structural and infrastructural engineering applications: A state-ofthe-art review", Constr. Build. Mater., 190, 995 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.166
  3. H. Xu, F. Qiu, Y. Wang, D. Yang, W. Wu, Z. Chen, and J. Zhu, "Preparation, mechanical properties of waterborne polyurethane and crosslinked polyurethane-acrylate composite", J. Appl. Polym. Sci., 124, 958 (2012). https://doi.org/10.1002/app.35127
  4. M. He, J. Xu, F. Qiu, and X. Chen, "Preparation, characterization, and property analysis of environmentally friendly waterborne polyurethane-acrylate", Int. J. Polym. Anal. Charact., 18, 211 (2013). https://doi.org/10.1080/1023666X.2013.755657
  5. L. Wu, B. You, and D. Li, "Synthesis and characterization of urethane/acrylate composite latex", J. Appl. Polym. Sci., 84, 1620 (2002). https://doi.org/10.1002/app.10526
  6. C. Wang, F. Chu, C. Graillat, A. Guyot, C. Gauthier, and J. P. Chapel, "Hybrid polymer latexes: acrylics-polyurethane from miniemulsion polymerization: properties of hybrid latexes versus blends", Polymer, 46, 1113 (2005). https://doi.org/10.1016/j.polymer.2004.11.051
  7. D. Kukanja, J. Golob, A. Zupancic-Valant, and M. Krajnc, "The structure and properties of acrylic-polyurethane hybrid emulsions and comparison with physical blends", J. Appl. Polym. Sci., 78, 67 (2000). https://doi.org/10.1002/1097-4628(20001003)78:1<67::AID-APP100>3.0.CO;2-4
  8. P. J. Peruzzo, P. S. Anbinder, O. R. Pardini, J. Vega, C. A. Costa, F. Galembeck, and J. I. Amalvy, "Waterborne polyurethane/acrylate: Comparison of hybrid and blend systems", Prog. Org. Coat., 72, 429 (2011). https://doi.org/10.1016/j.porgcoat.2011.05.016
  9. Y. Deng, C. Zhou, Q. Zhang, M. Zhang, and H. Zhang, "Structure and performance of waterborne polyurethaneacrylate composite emulsions for industrial coatings: Effect of preparation methods", Colloid Polym. Sci., 298, 139 (2020). https://doi.org/10.1007/s00396-019-04583-6
  10. F. Yu, L. Cao, Z. Meng, N. Lin, and X. Y. Liu, "Crosslinked waterborne polyurethane with high waterproof performance", Polym. Chem., 7, 3913 (2016). https://doi.org/10.1039/C6PY00350H
  11. M. M. Rahman, E. Y. Kim, J. Y. Kwon, H. J. Yoo, and H. D. Kim, "Cross-linking reaction of waterborne polyurethane adhesives containing different amount of ionic groups with hexamethoxymethyl melamine," Int. J. Adhes. Adhes., 28, 47 (2008). https://doi.org/10.1016/j.ijadhadh.2007.03.004
  12. A. Asif, L. Hu, and W. Shi, "Synthesis, rheological, and thermal properties of waterborne hyperbranched polyurethane acrylate dispersions for UV curable coatings", Colloid Polym. Sci., 287, 1041 (2009). https://doi.org/10.1007/s00396-009-2062-8
  13. H. L. Kim, Y. H. Lee, J. S. Kim, C. C. Park, H. Park, H. H. Chun, and H. D. Kim, "Preparation and properties of crosslinkable waterborne polyurethane and polyurethane-acrylic hybrid emulsions and their crosslinked polymers", J. Polym. Res., 23, 1(2016). https://doi.org/10.1007/s10965-015-0892-2
  14. H. Xu, F. Qiu, Y. Wang, D. Yang, W. Wu, Z. Chen, and J. Zhu, "Preparation, mechanical properties of waterborne polyurethane and crosslinked polyurethane-acrylate composite", J. Appl. Polym. Sci., 124, 958 (2012). https://doi.org/10.1002/app.35127
  15. Z. Liu, H. Chen, G. Hu, J. Wang, Y. Xin, C. Xiang, and Y. Zhou, "Excellent water resistance and mechanically robust waterborne polyurethane-acrylate based on dithiol post-chain extension", J. Coat. Technol. Res., 17, 1065 (2020). https://doi.org/10.1007/s11998-020-00332-5
  16. J. Kajtna, J. Golob, and M. Krajnc, "The effect of polymer molecular weight and crosslinking reactions on the adhesion properties of microsphere water-based acrylic pressure-sensitive adhesives". Int. J. Adhes. Adhes., 29, 186 (2009). https://doi.org/10.1016/j.ijadhadh.2008.04.012
  17. G. A. Alvarez, M. Fuensanta, V. H. Orozco, and L. F. Giraldo, "Martin-Martinez, J. M. Hybrid waterborne polyurethane/ acrylate dispersion synthesized with bisphenol A-glicidylmethacrylate (Bis-GMA) grafting agent", Prog. Org. Coat., 118, 30 (2018). https://doi.org/10.1016/j.porgcoat.2018.01.016
  18. D. E. Kim, S. O. Kang, and S. H. Lee, "Effect of NCO index on the particle size of polycarbonate diol-based polyurethane dispersion", Elast. Compos., 55, 20 (2020). https://doi.org/10.7473/ec.2020.55.1.20
  19. W. Yin, X. Zeng, H. Li, Y. Hou, and Q. Gao, "Synthesis, photopolymerization kinetics, and thermal properties of UV-curable waterborne hyperbranched polyurethane acrylate dispersions", J. Coat. Technol. Res., 8, 577 (2011). https://doi.org/10.1007/s11998-011-9338-x
  20. J. Xu, Y. Jiang, F. Qiu, Y. Dai, D. Yang, Z. Yu, and P. Yang, "Synthesis, mechanical properties and iron surface conservation behavior of UV-curable waterborne polyurethane-acrylate coating modified with inorganic carbonate", Polym. Bull., 75, 4713 (2018). https://doi.org/10.1007/s00289-018-2294-1
  21. G. Chen, S. Ouyang, Y. Deng, M. Chen, Y. Zhao, W. Zou, and Q. Zhao, "Improvement of self-cleaning waterborne polyurethane-acrylate with cationic TiO2/reduced graphene oxide", RSC Adv., 9, 18652 (2019). https://doi.org/10.1039/c9ra03250a
  22. L. Xu, Z. Wang, G. Yang, G. Zhang, H. Wei, H. Fang, and Y. Ding, "CO2-triggered hydrophobic/hydrophilic switchable waterborne polyurethane-acrylate with simultaneously improved water resistance and mechanical properties", J. Coat. Technol. Res., 18, 989 (2021). https://doi.org/10.1007/s11998-021-00476-y
  23. Y. Hu, C. Liu, Q. Shang, and Y. Zhou, "Synthesis and characterization of novel renewable castor oil-based UV-curable polyfunctional polyurethane acrylate", J. Coat. Technol. Res., 15, 77 (2018). https://doi.org/10.1007/s11998-017-9948-z
  24. K. Li, Y. Shen, G. Fei, H. Wang, and J. Li, "Preparation and properties of castor oil/pentaerythritol triacrylate-based UV curable waterborne polyurethane acrylate", Prog. Org. Coat., 78, 146 (2015). https://doi.org/10.1016/j.porgcoat.2014.09.012
  25. Z. Liu, H. Chen, G. Hu, J. Wang, Y. Xin, C. Xiang, and Y. Zhou, "Excellent water resistance and mechanically robust waterborne polyurethane-acrylate based on dithiol post-chain extension", J. Coat. Technol. Res., 17, 1065 (2020). https://doi.org/10.1007/s11998-020-00332-5
  26. E. J. Kim, Y. R. Kwon, Y. W. Chang, and D. H. Kim, "Effect of NCO/OH Ratio and Chain Extender Content on Properties of Polycarbonate Diol-based Waterborne Polyurethane", Elast. Compos., 57, 13 (2022).