Acknowledgement
The author is very grateful to the reviewer for reading carefully the paper and pointing out errors in the proofs of Theorem 2.13 and Theorem 3.13 in the original version. The author was supported by the National Natural Science Foundation of China (No. 12061001).
References
- D. F. Anderson and A. Badawi, On φ-Prufer rings and φ-Bezout rings, Houston J. Math. 30 (2004), no. 2, 331-343.
- D. F. Anderson and A. Badawi, On φ-Dedekind rings and φ-Krull rings, Houston J. Math. 31 (2005), no. 4, 1007-1022.
- A. Badawi, On φ-chained rings and φ-pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725-736.
- A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669-1677. https://doi.org/10.1081/AGB-120018502
- E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. https://doi.org/10.1515/9783110803662
- W. Fanggui and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155-165. https://doi.org/10.1016/S0022-4049(97)00150-3
- L. Fuchs and L. Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, 84, American Mathematical Society, Providence, RI, 2001. https://doi.org/10.1090/surv/084
- S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, SpringerVerlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
- J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- B. Khoualdia and A. Benhissi, Nonnil-coherent rings, Beitr. Algebra Geom. 57 (2016), no. 2, 297-305. https://doi.org/10.1007/s13366-015-0260-8
- H. Kim and F. Wang, On φ-strong Mori rings, Houston J. Math. 38 (2012), no. 2, 359-371.
- W. V. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc. 138 (1969), 505-512. https://doi.org/10.2307/1994928
- F. Wang and H. Kim, w-injective modules and w-semi-hereditary rings, J. Korean Math. Soc. 51 (2014), no. 3, 509-525. https://doi.org/10.4134/JKMS.2014.51.3.509
- F. Wang and H. Kim, Two generalizations of projective modules and their applications, J. Pure Appl. Algebra 219 (2015), no. 6, 2099-2123. https://doi.org/10.1016/j.jpaa.2014.07.025
- F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
- F. Wang and H. Kim, Relative FP-injective modules and relative IF rings, Comm. Algebra 49 (2021), no. 8, 3552-3582. https://doi.org/10.1080/00927872.2021.1900861
- F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean Math. Soc. 52 (2015), no. 4, 1327-1338. https://doi.org/10.4134/BKMS.2015.52.4.1327
- S. Xing and F. Wang, Purity over Prufer v-multiplication domains, J. Algebra Appl. 17 (2018), no. 6, 1850100, 11 pp. https://doi.org/10.1142/S0219498818501001
- S. Xing and F. Wang, Purity over Prufer v-multiplication domains, II, J. Algebra Appl. 17 (2018), no. 12, 1850223, 11 pp. https://doi.org/10.1142/S0219498818502237
- X. Zhang, W. Qi, Some remarks on φ-Dedekind rings and φ-Prufer rings, https://arxiv.org/abs/2103.08278. 103.08278
- X. Zhang and F. Wang, On characterizations of w-coherent rings II, Comm. Algebra 49 (2021), no. 9, 3926-3940. https://doi.org/10.1080/00927872.2021.1909607
- X. Zhang and W. Zhao, On φ-w-flat modules and their homological dimensions, Bull. Korean Math. Soc. 58 (2021), no. 4, 1039-1052. https://doi.org/10.4134/BKMS.b200816
- W. Zhao, On Φ-flat modules and Φ-Prufer rings, J. Korean Math. Soc. 55 (2018), no. 5, 1221-1233. https://doi.org/10.4134/JKMS.j170667
- W. Zhao, F. Wang, and G. Tang, On ϕ-von Neumann regular rings, J. Korean Math. Soc. 50 (2013), no. 1, 219-229. https://doi.org/10.4134/JKMS.2013.50.1.219