DOI QR코드

DOI QR Code

A NOTE ON 𝜙-PRÜFER ν-MULTIPLICATION RINGS

  • Zhang, Xiaolei (School of Mathematical Sciences Qufu Normal University and School of Mathematics and Statistics Shandong University of Technology)
  • Received : 2021.10.14
  • Accepted : 2022.02.10
  • Published : 2022.09.30

Abstract

In this note, we show that a strongly 𝜙-ring R is a 𝜙-PvMR if and only if any 𝜙-torsion-free R-module is 𝜙-w-flat, if and only if any GV-torsion-free divisible R-module is nonnil-absolutely w-pure, if and only if any GV-torsion-free h-divisible R-module is nonnil-absolutely w-pure, if and only if any finitely generated nonnil ideal of R is w-projective.

Keywords

Acknowledgement

The author is very grateful to the reviewer for reading carefully the paper and pointing out errors in the proofs of Theorem 2.13 and Theorem 3.13 in the original version. The author was supported by the National Natural Science Foundation of China (No. 12061001).

References

  1. D. F. Anderson and A. Badawi, On φ-Prufer rings and φ-Bezout rings, Houston J. Math. 30 (2004), no. 2, 331-343.
  2. D. F. Anderson and A. Badawi, On φ-Dedekind rings and φ-Krull rings, Houston J. Math. 31 (2005), no. 4, 1007-1022.
  3. A. Badawi, On φ-chained rings and φ-pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725-736.
  4. A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669-1677. https://doi.org/10.1081/AGB-120018502
  5. E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. https://doi.org/10.1515/9783110803662
  6. W. Fanggui and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155-165. https://doi.org/10.1016/S0022-4049(97)00150-3
  7. L. Fuchs and L. Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, 84, American Mathematical Society, Providence, RI, 2001. https://doi.org/10.1090/surv/084
  8. S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, SpringerVerlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
  9. J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
  10. B. Khoualdia and A. Benhissi, Nonnil-coherent rings, Beitr. Algebra Geom. 57 (2016), no. 2, 297-305. https://doi.org/10.1007/s13366-015-0260-8
  11. H. Kim and F. Wang, On φ-strong Mori rings, Houston J. Math. 38 (2012), no. 2, 359-371.
  12. W. V. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc. 138 (1969), 505-512. https://doi.org/10.2307/1994928
  13. F. Wang and H. Kim, w-injective modules and w-semi-hereditary rings, J. Korean Math. Soc. 51 (2014), no. 3, 509-525. https://doi.org/10.4134/JKMS.2014.51.3.509
  14. F. Wang and H. Kim, Two generalizations of projective modules and their applications, J. Pure Appl. Algebra 219 (2015), no. 6, 2099-2123. https://doi.org/10.1016/j.jpaa.2014.07.025
  15. F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
  16. F. Wang and H. Kim, Relative FP-injective modules and relative IF rings, Comm. Algebra 49 (2021), no. 8, 3552-3582. https://doi.org/10.1080/00927872.2021.1900861
  17. F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean Math. Soc. 52 (2015), no. 4, 1327-1338. https://doi.org/10.4134/BKMS.2015.52.4.1327
  18. S. Xing and F. Wang, Purity over Prufer v-multiplication domains, J. Algebra Appl. 17 (2018), no. 6, 1850100, 11 pp. https://doi.org/10.1142/S0219498818501001
  19. S. Xing and F. Wang, Purity over Prufer v-multiplication domains, II, J. Algebra Appl. 17 (2018), no. 12, 1850223, 11 pp. https://doi.org/10.1142/S0219498818502237
  20. X. Zhang, W. Qi, Some remarks on φ-Dedekind rings and φ-Prufer rings, https://arxiv.org/abs/2103.08278. 103.08278
  21. X. Zhang and F. Wang, On characterizations of w-coherent rings II, Comm. Algebra 49 (2021), no. 9, 3926-3940. https://doi.org/10.1080/00927872.2021.1909607
  22. X. Zhang and W. Zhao, On φ-w-flat modules and their homological dimensions, Bull. Korean Math. Soc. 58 (2021), no. 4, 1039-1052. https://doi.org/10.4134/BKMS.b200816
  23. W. Zhao, On Φ-flat modules and Φ-Prufer rings, J. Korean Math. Soc. 55 (2018), no. 5, 1221-1233. https://doi.org/10.4134/JKMS.j170667
  24. W. Zhao, F. Wang, and G. Tang, On ϕ-von Neumann regular rings, J. Korean Math. Soc. 50 (2013), no. 1, 219-229. https://doi.org/10.4134/JKMS.2013.50.1.219