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A NOTE ON φ-PRÜFER v-MULTIPLICATION RINGS

Xiaolei Zhang

Abstract. In this note, we show that a strongly φ-ring R is a φ-PvMR if

and only if any φ-torsion-free R-module is φ-w-flat, if and only if any GV-

torsion-free divisible R-module is nonnil-absolutely w-pure, if and only if
any GV-torsion-free h-divisible R-module is nonnil-absolutely w-pure, if

and only if any finitely generated nonnil ideal of R is w-projective.

1. Introduction

Throughout this paper, R denotes a commutative ring with identity and all
modules are unitary. We always denote by Nil(R) the nil radical of R, Z(R)
the set of all zero-divisors of R and T(R) the total ring of fractions of R. An
ideal I of R is said to be nonnil if there is a non-nilpotent element in I. A ring
R is an NP-ring if Nil(R) is a prime ideal, and a ZN-ring if Z(R) = Nil(R). A
prime ideal p is said to be divided prime if p ( (x) for every x ∈ R \ p. Set
H = {R |R is a commutative ring and Nil(R) is a divided prime ideal of R}.
A ring R is a φ-ring if R ∈ H. Moreover, a ZN φ-ring is said to be a strongly
φ-ring. For a φ-ring R, the map φ : T(R) → RNil(R) such that φ( ba ) = b

a is
a ring homomorphism, and the image of R, denoted by φ(R), is a strongly φ-
ring. The notion of Prüfer domains is one of the most famous integral domains
that attract many algebraists. In 2004, Anderson and Badawi [1] extended the
notion of Prüfer domains to that of φ-Prüfer rings which are φ-rings satisfying
that each finitely generated nonnil ideal is φ-invertible. The authors in [1]
characterized φ-Prüfer rings from the ring-theoretic point of view. In 2018,
Zhao [23] characterized φ-Prüfer rings using the homological properties of φ-flat
modules. Recently, Zhang and Qi [20] gave a module-theoretic characterization
of φ-Prüfer rings in terms of φ-flat modules and nonnil-FP-injective modules.

Recall that an integral domain R is called a Prüfer v-multiplication domain
(PvMD for short) provided that any nonzero ideal of R is w-invertible (see [6]
for example). In 2014, Wang et al. [13] showed that an integral domain R is a
PvMD if and only if Rm is a valuation domain for any maximal w-ideal m of R.
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In 2015, Wang et al. [17] obtained that an integral domain R is a PvMD if and
only if w-w.gl.dim(R) ≤ 1, if and only if any torsion-free R-module is w-flat. In
2018, Xing et al. [19] gave a new module-theoretic characterization of PvMDs,
i.e., an integral domain R is a PvMD if and only if any divisible R-module is
absolutely w-pure, if and only if any h-divisible R-module is absolutely w-pure.
In order to extend the notion of PvMDs to that of commutative rings in H,
the author of this paper and Zhao [22] introduced the notion of φ-PvMRs as
the φ-rings in which any finitely generated nonnil ideal is φ-w-invertible. They
also gave some ring-theoretic and homology-theoretic characterizations of φ-
PvMRs. In this paper, we mainly study the module-theoretic characterizations
of φ-PvMRs, which can be seen a generalization of Wang’s and Xing’s results
in [17] and [19], respectively.

As our work involves the w-operation theory, we give a quick review as
below. Let R be a commutative ring and J a finitely generated ideal of R.
Then J is called a GV-ideal if the natural homomorphism R→ HomR(J,R) is
an isomorphism. The set of all GV-ideals is denoted by GV(R). Let M be an
R-module and define

torGV(M) := {x ∈M | Jx = 0 for some J ∈ GV(R)}.

An R-module M is said to be GV-torsion (resp., GV-torsion-free) if torGV(M)
= M (resp., torGV(M) = 0). A GV-torsion-free module M is said to be a w-
module if, for any x ∈ E(M), there is a GV-ideal J such that Jx ⊆ M where
E(M) is the injective envelope of M . The w-envelope Mw of a GV-torsion-free
module M is defined by the minimal w-module that contains M . A maximal
w-ideal which is maximal among the w-submodules of R is proved to be prime
(see [15, Theorem 6.2.15]). The set of all maximal w-ideals is denoted by w-
Max(R). Let M be an R-module and set L(M) = (M/torGV(M))w. Recall
from [14] that M is said to be w-projective if Ext1R(L(M), N) is GV-torsion for
any torsion-free w-module N .

An R-homomorphism f : M → N is said to be a w-monomorphism (resp.,
w-epimorphism, w-isomorphism) if for any p ∈ w-Max(R), fp : Mp → Np is a
monomorphism (resp., an epimorphism, an isomorphism). Note that f is a w-
monomorphism (resp., w-epimorphism) if and only if Ker(f) (resp., Coker(f))
is GV-torsion. A sequence A→ B → C is said to be w-exact if, for any p ∈ w-
Max(R), Ap → Bp → Cp is exact. A class C of R-modules is said to be closed
under w-isomorphisms provided that for any w-isomorphism f : M → N , if
one of the modules M and N is in C, so is the other. An R-module M is said
to be of finite type provided that there exist a finitely generated free module F
and a w-epimorphism g : F →M , and it is said to be of finitely presented type
provided that there is a w-exact sequence F1 → F0 → M → 0, where F0 and
F1 are finitely generated free modules. The classes of finite type and finitely
presented type modules are all closed under w-isomorphisms (see [15, Corollary
6.4.4; Corollary 6.4.13]).
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2. nonnil-absolutely w-pure modules

Recall from [18], a w-exact sequence of R-modules 0 → N → M → L → 0
is said to be w-pure exact if, for any R-module K, the induced sequence 0 →
K ⊗R N → K ⊗R M → K ⊗R L → 0 is w-exact. If N is a submodule of M
and the exact sequence 0 → N → M → M/N → 0 is w-pure exact, then N
is said to be a w-pure submodule of M . Recall from [19], an R-module M is
called an absolutely w-pure module provided that M is w-pure in every module
containing M as a submodule.

Let R be an NP-ring and M an R-module. Define

φ-tor(M) = {x ∈M | Ix = 0 for some nonnil ideal I of R}.

An R-module M is said to be φ-torsion (resp., φ-torsion-free) provided that
φ-tor(M) = M (resp., φ-tor(M) = 0). Now we generalize the notions in [18]
and [19] to NP-rings. A w-exact sequence 0 → M → N → N/M → 0 of R-
modules is said to be nonnil w-pure exact provided that 0→ HomR(T,M)→
HomR(T,N) → HomR(T,N/M) → 0 is w-exact for any finitely presented φ-
torsion module T . In addition, if M is a submodule of N , then we say M is a
nonnil w-pure submodule in N .

Definition 2.1. Let R be an NP-ring. An R-module M is called a nonnil-
absolutely w-pure module provided that M is a nonnil w-pure submodule in
every R-module containing M as a submodule.

Following Xing [19, Theorem 2.6], an R-module M is absolutely w-pure if
and only if Ext1R(F,M) is GV-torsion for any finitely presented module F , if
and only if M is a w-pure submodule in its injective envelope. Now, we give a
φ-version of Xing’s result.

Proposition 2.2. Let R be an NP-ring and M an R-module. The following
statements are equivalent:

(1) M is a nonnil-absolutely w-pure module;
(2) Ext1R(T,M) is GV-torsion for any finitely presented φ-torsion module

T ;
(3) M is a nonnil w-pure submodule in any injective module containing M ;
(4) M is a nonnil w-pure submodule in its injective envelope;
(5) For any diagram

M

0 // K

f

OO

i // F

gc
bb

with F finitely generated projective, K finitely generated and F/K φ-
torsion, there is some J ∈ GV(R) such that any given c ∈ J , there
exists gc : F →M such that cf = gci.
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Proof. (1)⇒ (3)⇒ (4) : They hold trivially.
(2)⇒ (1) : Let N be an R-module containing M and T a finitely presented

φ-torsion module. Then we have the following exact sequence

0→ HomR(T,M)→ HomR(T,N)→ HomR(T,N/M)→ Ext1R(T,M).

Since Ext1R(T,M) is GV-torsion, we have

0→ HomR(T,M)→ HomR(T,N)→ HomR(T,N/M)→ 0

is w-exact. Hence M is a nonnil w-pure submodule in N .
(4) ⇒ (2) : Let E be the injective envelope of M . Then, for any finitely

presented φ-torsion module T , we have the following exact sequence:

0→ HomR(T,M)→ HomR(T,E)→ HomR(T,E/M)→ Ext1R(T,M)→ 0.

Thus we have Ext1R(T,M) is GV-torsion by (4).

(2) ⇒ (5) : Consider the exact sequence 0 → K
i−→ F

π−→ F/K → 0 with
F/K finitely presented φ-torsion. Thus we have the following exact sequence:

HomR(F,M)
i∗−→ HomR(K,M)→ Ext1R(F/K,M)→ 0.

Since F/K is finitely presented φ-torsion, Ext1R(F/K,M) is GV-torsion by (2).
Thus i∗ is a w-epimorphism. Since f ∈ HomR(K,M), there exists a GV-ideal
J of R such that Jf ∈ Im(i∗). So, for any given c ∈ J , there exists gc : F →M
such that gci = cf.

(5)⇒ (2) : Let T be a finitely presented φ-torsion module. Then there exists

a short sequence 0 → K
i−→ F → T → 0 with F finitely generated projective

and K finitely generated. Thus we have the exact sequence:

HomR(F,M)
i∗−→ HomR(K,M)→ Ext1R(T,M)→ 0.

For any f ∈ HomR(K,M), there is some J ∈ GV(R) such that any given c ∈ J ,
there exists gc : F →M such that cf = gci by (5). So Jf ⊆ Im(i∗). Thus i∗ is
a w-epimorphism, and so Ext1R(T,M) is GV-torsion. �

Recall from [20, Definition 1.2] that an R-module M is called nonnil-FP-
injective provided that Ext1R(T,M) = 0 for any finitely presented φ-torsion
module T . Thus we have the following result by Proposition 2.2.

Lemma 2.3. Let R be an NP-ring. Then any nonnil-FP-injective module is
nonnil-absolutely w-pure.

Lemma 2.4. Let T be a GV-torsion module. Then T is an absolutely w-pure
module.

Proof. Let T be a GV-torsion module and F a finitely presented R-module.
Considering the exact sequence 0→ K → P → F → 0 with P finitely generated
projective and K finitely generated, we have the following exact sequence:

HomR(K,T )→ Ext1R(F, T )→ 0.
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Since K is finitely generated and T is GV-torsion, HomR(K,T ) is GV-torsion
(see [16, Lemma 2.1(1)]). So Ext1R(F, T ) is GV-torsion. Consequently, T is a
absolutely w-pure module. �

Obviously, we have the following result by Proposition 2.2, [19, Theorem
2.6] and Lemma 2.4.

Corollary 2.5. Let R be an NP-ring. Then any absolutely w-pure module is
nonnil-absolutely w-pure. Consequently, any GV-torsion module is a nonnil-
absolutely w-pure module.

In order to characterize rings over which any nonnil-absolutely w-pure mod-
ule is absolutely w-pure, we recall some basic facts.

Lemma 2.6 ([22, Lemma 1.6]). Let R be a φ-ring and I a nonnil ideal of R.
Then Nil(R) = INil(R).

Lemma 2.7 ([20, Proposition 1.5]). Let R be a φ-ring and M an FP-injective
R/Nil(R)-module. Then M is nonnil-FP-injective over R.

Now, we recall the special injective w-module constructed in [21]. Let R{x}
be the w-Nagata ring of R, that is, the localization of R[X] at the multiplicative
closed set Sw = {f ∈ R[x] | c(f) ∈ GV(R)}, where c(f) is the content of f . Let
M be an R-module. Set M{x} = M ⊗R R{x}. Then {m{x} |m ∈ w-Max(R)}
is the set of all maximal ideals of R{x} by [14, Proposition 3.3(4)]. Set

E′ =
∏

m∈w-Max(R)

ER(R{x}/m{x}),

where ER(R{x}/m{x}) is the injective envelope of the R-module R{x}/m{x}.
Since R{x}/m{x} is a w-module over R by [15, Theorem 6.6.19(2)], it follows
that E′ is an injective w-module over R. Set

Ẽ := HomR(R{x}, E′).
Then Ẽ is trivially an R{x}-module. Since R{x} is a flat R-module, Ẽ is an
injective w-module over R by [15, Theorem 6.1.18] and [5, Theorem 3.2.9].

Lemma 2.8 ([21, Corollary 3.11]). Let M be an R-module. The following
statements are equivalent:

(1) M is GV-torsion;
(2) HomR(M,E) = 0 for any injective w-module E;

(3) HomR(M, Ẽ) = 0.

Theorem 2.9. Let R be a φ-ring. Then R is an integral domain if and only
if any nonnil-absolutely w-pure module is absolutely w-pure.

Proof. If R is an integral domain, then any nonnil-absolutely w-pure module
is absolutely w-pure obviously.

Assume that any nonnil-absolutely w-pure module is absolutely w-pure.

Note that we have HomR(R/Nil(R), Ẽ) is an injective R/Nil(R)-module by
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[5, Proposition 3.1.6]. Thus by Lemma 2.7, HomR(R/Nil(R), Ẽ) is a nonnil-
FP-injective R-module, and so is a nonnil-absolutely w-pure R-module. Thus

we have HomR(R/Nil(R), Ẽ) is an absolutely w-pure R-module by assumption.
That is,

Ext1R(F,HomR(R/Nil(R), Ẽ)) ∼= HomR(TorR1 (F,R/Nil(R)), Ẽ)

is a GV-torsion module for any finitely presented R-module F as Ẽ is an

injective R-module. Since Ẽ is a w-module, HomR(TorR1 (F,R/Nil(R)), Ẽ) is
also a w-module by [15, Theorem 6.1.18]. Thus we have

HomR(TorR1 (F,R/Nil(R)), Ẽ) = 0.

Hence TorR1 (F,R/Nil(R)) is GV-torsion by Lemma 2.8. Let s be a nilpotent
element in R and set F = R/〈s〉. Then

TorR1 (F,R/Nil(R)) = TorR1 (R/〈s〉, R/Nil(R))

∼= 〈s〉 ∩Nil(R)/sNil(R) = 〈s〉/sNil(R)

is GV-torsion (see [15, Exercise 3.20]). Thus there is a GV-ideal J such that
sJ ⊆ sNil(R). Since J is a GV-ideal, it is a nonnil ideal, thus Nil(R) = JNil(R)
by Lemma 2.6. So sJ ⊆ sNil(R) = sJNil(R) ⊆ sJ . That is, sJ = sJNil(R).
Since sJ is finitely generated, sJ = 0 by Nakayama’s lemma. Since J ∈ GV(R),
sR ⊆ R is GV-torsion-free, then s = 0. Consequently, Nil(R) = 0. Since R
is a φ-ring, Nil(R) = 0 is the unique minimal prime ideal. So R is an integral
domain. �

Lemma 2.10. Let R be a ring. If R is a (strongly) φ-ring, then Rp is a
(strongly) φ-ring for any prime ideal p of R.

Proof. Let R be a φ-ring and p a prime ideal of R. Then Rp/Nil(Rp) ∼=
(R/Nil(R))p which is certainly an integral domain, where p = p/Nil(R). So
Nil(Rp) is a prime ideal of Rp. Let r

s ∈ Rp \ Nil(Rp) and r1
s1
∈ Nil(Rp). Note

r ∈ R \ Nil(R) and r1 ∈ Nil(R). Then r1 = rt for some t ∈ Nil(R). Thus
r1
s1

= rt
s1

= rts
ss1

= r
s
ts
s1
∈ 〈 rs 〉. So Nil(Rp) is a divided prime ideal of Rp. Hence

Rp is a φ-ring. Now suppose R is a strongly φ-ring. Let r
s ∈ Rp \ Nil(Rp).

Then r is non-nilpotent, and thus r is regular. Assume r
s
r1
s1

= 0 in Rp. Then

there exists t ∈ R \ p such that rr1t = 0. Thus r1t = 0. Hence r1 and thus r1
s1

is equal to 0 since t is also regular. Consequently, Rp is a strongly φ-ring. �

Remark 2.11. Note that the converse of Lemma 2.10 is not true in general.
Indeed, let R be a von Neumann regular ring which is not a field. Then Rp is
a field for any prime ideal p of R. However, R is not a φ-ring since Nil(R) = 0
is not a prime ideal in this case.

Let R be an NP-ring. Recall from [24] that an R-module M is said to
be φ-flat if for every monomorphism f : A → B with Coker(f) φ-torsion,
f ⊗R 1 : A ⊗R M → B ⊗R M is a monomorphism; a φ-ring R is said to be
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φ-von Neumann if any R-module is φ-flat. The authors in [24, Theorem 4.1]
proved that a φ-ring R is φ-von Neumann if and only if the Krull dimension of
R is 0. It was shown in [20, Theorem 1.7] that a φ-ring R is φ-von Neumann
if and only if R/Nil(R) is a field, if and only if every non-nilpotent element
is invertible, if and only if any R-module is nonnil-FP-injective. Recall from
[22, Definition 1.3] that an R-module M is said to be φ-w-flat if, for every
monomorphism f : A→ B with Coker(f) φ-torsion, f⊗R1 : A⊗RM → B⊗RM
is a w-monomorphism. It was proved in [22, Theorem 3.1] that a φ-ring R is
φ-von Neumann if and only if any R-module is φ-w-flat. Now we give a new
characterization of φ-von Neumann rings.

Lemma 2.12. Let R be a φ-ring. Then R is a φ-von Neumann regular ring if
and only if Rm is a φ-von Neumann regular ring for any m ∈ w-Max(R).

Proof. Assume that R is a φ-von Neumann regular ring. Let m be a prime
ideal. Let r

s be a non-nilpotent element in Rm. Then r is non-nilpotent. So
r is invertible by [20, Theorem 1.7]. Hence r

s is also invertible in Rm, whence
Rm is a φ-von Neumann regular ring by [20, Theorem 1.7] and Lemma 2.10.

Now let r be a non-nilpotent element in R. Then r
1 is a non-nilpotent element

in Rm for any m ∈ w-Max(R), since R is a φ-ring. By [20, Theorem 1.7], r
1 is

invertible in Rm. Thus r 6∈ m for any m ∈ w-Max(R). So 〈r〉w = R, and hence
r is invertible by [15, Exercise 6.11(2)]. �

Theorem 2.13. Let R be a φ-ring. Then R is a φ-von Neumann regular ring
if and only if any R-module is nonnil-absolutely w-pure.

Proof. Suppose R is a φ-von Neumann regular ring and let M be an R-module.
Then any non-nilpotent element of R is invertible by [20, Theorem 1.7]. So the
only nonnil ideal of R is R itself. Let T be a finitely presented φ-torsion
module. Then T = φ-tor(T ) = {x ∈ T | Ix = 0 for some nonnil ideal I of
R} = 0. It follows that Ext1R(T,M) = 0, which is GV-torsion. Consequently,
M is nonnil-absolutely w-pure.

Assume that any R-module is nonnil-absolutely w-pure and let I be a finitely
generated nonnil ideal of R. Since for any R-module M , Ext1R(R/I,M) is GV-
torsion, it follows that R/I is finitely generated w-projective. Thus Rm/Im
is a finitely generated projective Rm-module for any m ∈ w-Max(R) by [15,
Theorem 6.7.18]. Then Im is an idempotent ideal of Rm by [8, Theorem 1.2.15].
By [7, Chapter I, Proposition 1.10], Im is generated by an idempotent em ∈ Rm.
Thus Rm is a φ-von Neumann regular ring by [24, Theorem 4.1] and Lemma
2.10. So R is φ-von Neumann regular by Lemma 2.12. �

3. Some new characterizations of φ-Prüfer v-multiplication rings

Following [15], a ring R is said to be w-coherent if any finite type ideal of
R is of finitely presented type. Recall from [10] that a φ-ring R is said to be
a nonnil-coherent ring if any finitely generated nonnil ideal of R is of finitely
presented. Now, we generalize both w-coherent rings and nonnil-coherent rings.
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Definition 3.1. A φ-ring R is said to be a nonnil-w-coherent ring provided
that any finite type nonnil ideal of R is of finitely presented type.

Lemma 3.2. A φ-ring R is a nonnil-w-coherent ring if and only if any finitely
generated nonnil ideal of R is of finitely presented type.

Proof. Let I be a finite type nonnil ideal of a nonnil-w-coherent ring R. Then
there exists a finitely generated sub-ideal K of I such that I/K is GV-torsion.
Since I is a nonnil ideal, there is a non-nilpotent element s ∈ I such that
Js ⊆ K for some J ∈ GV(R). Since J is nonnil and R is a φ-ring, K is
also nonnil. So K is of finitely presented type, and hence I is also of finitely
presented type. �

Proposition 3.3. Suppose R is a strongly φ-ring. Then R is nonnil-w-coherent
if and only if R/Nil(R) is w-coherent.

Proof. Suppose R is nonnil-w-coherent. If I/Nil(R) is a finitely generated
nonzero R/Nil(R)-ideal, then I is a finitely generated nonnil R-ideal. Since
R is nonnil-w-coherent, I is of finitely presented type. So there are two exact
sequences 0 → T1 → L → N → 0 and 0 → N → J → T2 → 0, where T1
and T2 are GV-torsion, L is finitely presented. Now, we have an R/Nil(R)-
exact sequence 0 → N/Nil(R) → J/Nil(R) → T2 → 0. By [11, Lemma
2.11(a)], T2 is a GV-torsion R/Nil(R)-module and N/Nil(R) is a finitely gen-
erated R/Nil(R)-module. We have the exact sequence T1 ⊗R R/Nil(R) →
L ⊗R R/Nil(R) → N ⊗R R/Nil(R) → 0. By [11, Lemma 2.9(a)], we have
N ⊗R R/Nil(R) ∼= N/NNil(R) ∼= N/Nil(R). Then there is an exact sequence
0 → T → L ⊗R R/Nil(R) → N/Nil(R) → 0. By [11, Lemma 2.11(a)] again,
T is a GV-torsion R/Nil(R)-module. Since L ⊗R R/Nil(R) is a finitely pre-
sented R/Nil(R)-module, it follows that J/Nil(R) is a finitely presented type
R/Nil(R)-module. Hence, R/Nil(R) is w-coherent.

Assume that R/Nil(R) is w-coherent and let I be a finitely generated non-
nil ideal of R. Then I/Nil(R) is a finitely generated R/Nil(R)-ideal. Since
R/Nil(R) is a w-coherent domain, I/Nil(R) is a finitely presented type
R/Nil(R)-ideal. Write I/Nil(R) = (x1, . . . , xn), where xi is a non-nilpotent
element in R (i = 1, . . . , n). Set I = (x1, . . . , xn). We will show I is of finitely
presented type by induction on n. If n = 1, I = Rx1 ∼= R is of finitely pre-
sented type since R is a strongly φ-ring. For general case, I = (x1, . . . , xn) =
(x1, . . . , xn−1) + Rxn. By induction, we have (x1, . . . , xn−1) and Rxn are all
of finitely presented type. Since R/Nil(R) is a w-coherent domain, we have
(x1, . . . , xn−1)/Nil(R) ∩ Rxn/Nil(R) = ((x1, . . . , xn−1) ∩ Rxn)/Nil(R) is a fi-
nite type nonzero R/Nil(R)-ideal. So we have (x1, . . . , xn−1) ∩ Rxn is a finite
type nonnil ideal by [11, Lemma 2.9]. Consider the exact sequence

0→ (x1, . . . , xn−1) ∩Rxn → (x1, . . . , xn−1)⊕Rxn → (x1, . . . , xn)→ 0.

It follows from [15, Theorem 6.4.11] that I is of finitely presented type. �
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Let R be a ring and M an R-module. We recall from [9] the idealization
R(+)M of R by M . Let R(+)M be an R-module isomorphic to R⊕M . Define

(1) (r,m)+(s, n)=(r + s,m+ n),
(2) (r,m)(s, n)=(rs, sm+ rn).

Then R(+)M is a ring with identity (1, 0). The next example shows that
nonnil-w-coherent rings can neither be w-coherent nor be nonnil-coherent.

Example 3.4. Let D be a non-coherent w-coherent domain (see [15, Example
9.1.18]) with K its quotient field. Then K is not a finitely generated D-module.
Set R = D(+)K. Then D is a strongly φ-ring (see [2, Remark 1]). Since
Nil(R) = 0(+)K, it follows that R/Nil(R) ∼= D is a non-coherent w-coherent
domain. By Proposition 3.3, R is a nonnil-w-coherent ring. By [10, Remark
2.1], R is not nonnil-coherent. Next we will show R is not w-coherent. Note
that (0, 1)R is a finitely generated ideal of R. Consider the exact sequence
0 → L → R → (0, 1)R → 0. Then L = Nil(R) = 0(+)K. Since the w-
module K is not finitely generated over D, K is also not of finite type. By
[4, Lemma 2.2], the w-ideal Nil(R) is not of finite type. So (0, 1)R is not of
finitely presented type. Hence R is not w-coherent.

Lemma 3.5. Let R be a nonnil-w-coherent ring. Let T be a finitely gen-
erated φ-torsion module of finitely presented type. Suppose T is generated by
{t1, . . . , tk, tk+1} with k≥1 and Tk the submodule of T generated by {t1, . . . , tk}.
Then Tk is of finitely presented type.

Proof. Note T/Tk = (Tk + Rtk+1)/Tk+1
∼= Rtk+1/(Tk ∩ Rtk+1) ∼= R/I where

I = (0 :R tk+1 + Tk ∩Rtk+1) is an ideal of R. Since T is a φ-torsion module of
finitely presented type and Tk is finitely generated, it follows by [15, Theorem
6.4.14] that I is a finite type nonnil ideal of R . Since R is nonnil-w-coherent,
then I is of finitely presented type. Consider the following pull-back:

0

��

0

��
K

��

K

��
0 // X

��

// F

��

// R/I // 0

0 // Tk

��

// T

��

// R/I // 0

0 0

where F is finitely generated free. Then K is of finite type by [15, Theorem
6.4.11]. Since I is of finitely presented type, I{x} is finitely presented R{x}-
ideal by [14, Theorem 3.9]. So we have an R{x}-exact sequence: 0→ X{x} →
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F{x} → R{x}/I{x} → 0. So X{x} is a finitely presented R{x}-module by
[8, Theorem 2.1.2]. Hence X is of finitely presented type by [14, Theorem 3.9]
again. Thus Tk is finitely presented by [15, Theorem 6.4.12]. �

Proposition 3.6. Let R be a nonnil-w-coherent ring and T is a finitely gen-
erated φ-torsion module of finitely presented type. Suppose 0 → K → Rn →
T → 0 is an exact sequence. Then K is of finitely presented type.

Proof. We will show K is of finitely presented type by induction on n. If n = 1,
then K is a finite type nonnil ideal of R. Thus K is of finitely presented type
since R is nonnil-w-coherent. Suppose n = k+ 1. Then there is a commutative
diagram:

0 // K ∩Rk� _

��

// Rk� _

��

// Rk/K ∩Rk� _

��

// 0

0 // K

����

// Rk+1

����

// Rk+1/K

����

// 0

0 // I // R // R/I // 0,

where I = K/K ∩Rk is an ideal of R. Since T = Rk+1/K is finitely generated
φ-torsion of finitely presented type, it follows by Lemma 3.5 that Rk/K ∩Rk is
a φ-torsion module of finitely presented type. Thus R/I is φ-torsion of finitely
presented type by [15, Theorem 6.4.11]. Since Rk/K ∩ Rk is generated by k
elements, K ∩Rk and I are of finitely presented type by induction. Thus K is
also of finitely presented type by [15, Theorem 6.4.12]. �

Proposition 3.7. Let R be a nonnil-w-coherent ring and S a multiplicative
subset of R. Suppose T is a finitely presented φ-torsion module and E is a
GV-torsion-free module. Then there is a natural isomorphism:

Ext1R(T,E)S ∼= Ext1RS
(TS , ES).

Proof. Let T be a finitely presented φ-torsion R-module. Then there is an exact

sequence 0→ K → F1
f−→ F0 → T → 0, where F1 and F0 are finitely generated

free. Set A = Im(f). Then A is of finitely presented type by Proposition 3.6,
and hence K is of finite type by [15, Theorem 6.4.14]. So there is a finitely
generated submodule L of K such that K/L is GV-torsion. Consider the
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following pushout:

0

��

0

��
L

��

L

��
0 // K

��

// F1

��

// A // 0

0 // K/L

��

// X

��

// A // 0

0 0

We have X is finitely presented. Consider the following commutative diagram
with rows exact:

0 // HomR(A,E)S //

f1
��

HomR(X,E)S //

f2
��

HomR(K/L,E)S

f3
��

0

0 // HomRS
(AS , ES) // HomRS

(XS , ES) // HomRS
((K/L)S , ES) // 0.

Note that f2 is an isomorphism by [15, Theorem 2.6.16]. Since f3 is a monomor-
phism, f1 is also an isomorphism by Five Lemma. Now we consider the follow-
ing commutative diagram with rows exact:

HomR(F0, E)S //

g1

��

HomR(A,E)S //

f1
��

Ext1R(T,E)S

g
��

// 0

HomRS
((F0)S , ES) // HomRS

(AS , ES) // Ext1RS
(TS , ES) // 0.

Since f1 and g1 are isomorphisms, we have g is also an isomorphism by Five
Lemma. �

Recall from [3] that a φ-ring R is said to be a φ-chain ring (φ-CR for short) if
for any non-nilpotent elements a, b ∈ R, either a | b or b | a in R. A φ-ring R is
said to be a φ-Prüfer ring if any finitely generated nonnil ideal I is φ-invertible,
i.e., φ(I)φ(I−1) = φ(R) where I−1 = {x ∈ T(R) | Ix ⊆ R}. It follows from
[1, Corollary 2.10] that a φ-ring R is φ-Prüfer, if and only if Rm is a φ-CR for
any maximal ideal m of R, if and only if R/Nil(R) is a Prüfer domain, if and
only if φ(R) is a Prüfer ring.

Let R be a φ-ring. Recall from [11] that a nonnil ideal J of R is said to be
a φ-GV-ideal (resp., φ-w-ideal) of R if φ(J) is a GV-ideal (resp., w-ideal) of
φ(R). An ideal I of R is φ-w-invertible if (φ(I)φ(I)−1)W = φ(R) where W is
the w-operation of φ(R). In order to extend PvMDs to φ-rings, the authors in
[22] gave the notion of φ-Prüfer v-multiplication rings: A φ-ring R is said to be
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a φ-Prüfer v-multiplication ring (φ-PvMR for short) provided that any finitely
generated nonnil ideal is φ-w-invertible. They also show that a φ-ring R is a
φ-PvMR if and only if Rm is a φ-CR for any m ∈ w-Max(R), if and only if
R/Nil(R) is a PvMD, if and only if φ(R) is a PvMR.

Recall that an R-module E is said to be divisible if sM = M for any regular
element s ∈ R, and an R-module M is said to be h-divisible provided that
M is a quotient of an injective R-module. Evidently, any injective R-module
is h-divisible, and any h-divisible module is divisible. The authors in [20]
introduced the notion of nonnil-divisible modules E in which for any m ∈ E
and any non-nilpotent element a ∈ R, there exists x ∈ E such that ax = m.

Lemma 3.8 ([20, Lemma 2.2]). Let R be an NP-ring and E an R-module.
Consider the following statements:

(1) E is nonnil-divisible;
(2) E is divisible;
(3) Ext1R(R/〈a〉, E) = 0 for any a 6∈ Nil(R).

Then we have (1) ⇒ (2) and (1) ⇒ (3). Moreover, if R is a ZN-ring, all
statements are equivalent.

Lemma 3.9 ([20, Lemma 2.4]). Let R be an NP-ring and E a nonnil-divisible
R-module. Then Ep is a nonnil-divisible Rp-module for any prime ideal p of
R.

Let M be an R-module. Recall from [14] that M is said to have w-rank n
if, for any maximal w-ideal m of R, Mm is a free Rm-module of rank n. Let
τ denote the trace map of M , that is, τ : M ⊗R Hom(M,R) → R defined by
τ(x⊗f) = f(x) for x ∈M and f ∈ HomR(M,R). M is said to be w-invertible,
if the trace map τ is a w-isomorphism. It was proved in [14, Theorem 4.13]
that an R-module M is w-invertible if and only if M is of finite type and has
w-rank 1, if and only if M is w-projective of finite type and has w-rank 1.

Proposition 3.10. Let R be a strongly φ-ring and I a finitely generated nonnil
ideal of R. If I is w-projective, then I is φ-w-invertible.

Proof. Let I be a finitely generated nonnil ideal of the strongly φ-ring R. Then
I is a regular ideal of R. Let m be a maximal w-ideal of R. Since I is w-
projective R-ideal, Im is a free ideal of Rm by [15, Theorem 6.7.11]. Then
Im ∼= Rm or Im = 0. We claim that Im ∼= Rm. Indeed, let r be a regular
element in I. If Im = 0, then there is an element s ∈ R −m such that rs = 0.
So s = 0, which is a contradiction. Hence Im is of rank 1 for any maximal
w-ideal m of R. By [14, Theorem 4.13], φ(I) = I is w-invertible since R is a
strongly φ-ring. Hence I is φ-w-invertible. �

Lemma 3.11 ([20, Proposition 2.12]). Let R be an NP-ring, p a prime ideal
of R and M an R-module. Then M is φ-torsion over R if and only Mp is
φ-torsion over Rp.
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Lemma 3.12. Let R be an NP-ring, M an R-module. If M is φ-torsion-free
over R, then Mm is φ-torsion-free over Rm for any maximal w-ideal m of R.
Moreover, if M is GV-torsion-free, then the converse also holds.

Proof. Suppose M is a φ-torsion-free R-module. Let m be a maximal w-ideal
of R and m

s ∈ Mm. Suppose Im is a nonnil ideal of Rm and Im
m
s = 0 in Mm.

Then there exists t 6∈ m such that tIm = 0 in R. Since I is nonnil in R by
[22, Lemma 1.1], we have It is also nonnil as t is non-nilpotent. Since M is a
φ-torsion-free, m and thus m

s is equal to 0.
Suppose M is a GV-torsion-free R-module such that Mm is φ-torsion-free

over Rm for any maximal w-ideal m of R. Let m ∈ M such that Im = 0 for
some nonnil ideal I of R. Then Im

m
1 = 0 in Mm. Since Im is nonnil in Rm

by [22, Lemma 1.1], 〈m〉m = 0 for any maximal w-ideal m of R. Thus 〈m〉
is GV-torsion in M by [15, Theorem 6.2.15]. Since M is GV-torsion-free by
assumption, we have m = 0. �

It is well-known that an integral domain R is a PvMD if and only if any
torsion-free R-module is w-flat, if and only if any (h-)divisible R-module is
absolutely w-pure (see [17, 19]). Recently, the authors in [20] characterized φ-
Prüfer rings in terms of nonnil-FP-injective modules, that is, a strongly φ-ring
R is a φ-Prüfer ring if and only if any φ-torsion-free R-module is φ-flat, if and
only if any (h-)divisible module is nonnil-FP-injective. Now, we characterize
φ-PvMRs in terms of φ-w-flat modules, nonnil-absolutely w-pure modules and
w-projective modules, which can be seen as a generalization of the results in
[17,19,20].

Theorem 3.13. Let R be a strongly φ-ring. The following statements are
equivalent for R:

(1) R is a φ-PvMR;
(2) any φ-torsion-free R-module is φ-w-flat;
(3) any nonnil ideal of R is w-flat;
(4) any ideal of R is φ-w-flat;
(5) any GV-torsion-free divisible R-module is nonnil-absolutely w-pure;
(6) any GV-torsion-free h-divisible R-module is nonnil-absolutely w-pure;
(7) any finitely generated nonnil ideal of R is w-projective;
(8) any finite type nonnil ideal of R is w-projective.

Proof. (1)⇒ (2): Let m be a maximal w-ideal of R and M a φ-torsion-free R-
module. By Lemma 3.12, Mm is φ-torsion-free over Rm. Since R is a φ-PvMR,
Rm is a φ-CR by [22, Theorem 3.3]. Then Mm is φ-flat by [23, Theorem 4.3],
and thus M is φ-w-flat by [22, Theorem 1.4].

(2) ⇒ (4): It follows from the fact that R is φ-torsion-free since R is a
strongly φ-ring (see [23, Proposition 2.2]).

(4)⇔ (3): Let J be a nonnil ideal of R and I an ideal of R. We have

TorR1 (R/J, I) ∼= TorR2 (R/J,R/I) ∼= TorR1 (R/I, J).
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Now the assertion follows.
(4)⇒ (1): See [22, Theorem 3.8].
(3) ⇒ (7): Let I be a finitely generated nonnil ideal of R. Then I{x} is

a flat R{x}-ideal. Since R is a strongly φ-ring, there exists a non-zero-divisor
in I. So I[x] is a regular ideal of R[x], and hence I{x} is also a regular ideal
of R{x}. By [12, Corollary 3.1], I{x} is a projective R{x}-ideal. Hence, I is
w-projective by [15, Theorem 6.7.18].

(7)⇒ (1): It follows from Proposition 3.10.
(1) + (7)⇒ (5): First we claim that R is a nonnil-w-coherent ring. Indeed,

let I be a finitely generated nonnil ideal of R. Then I is w-projective by (7).
Hence I{x} is a finitely generated projective R{x}-ideal (which implies I{x}
is a finitely presented R{x}-ideal) by [15, Theorem 6.7.18]. So I is of finitely
presented type by [14, Theorem 3.9]. The claim holds by Lemma 3.2. By (1)
and [22, Theorem 3.3], Rm is a φ-chained ring. Note that by Lemma 3.11,
Tm is a finitely presented φ-torsion Rm-module. It follows from [23, Theorem
4.1] that Tm ∼=

⊕n
i=1Rm/Rmxi for some regular element xi ∈ Rm as Rm is

a strongly φ-ring by Lemma 2.10. It follows by Lemma 3.8 and Lemma 3.9
that Em is a divisible module over Rm . Thus, by Proposition 3.7, we have
Ext1R(T,E)m ∼= Ext1Rm

(Tm, Em) =
⊕n

i=1 Ext1Rm
(Rm/Rmxi, Em) = 0 by Lemma

3.8. It follows that Ext1R(T,E) is a GV-torsion module. Therefore E is a
nonnil-absolutely w-pure module.

(5)⇒ (6) and (8)⇒ (7): They hold trivially.
(6) ⇒ (7): Let N be a w-module and I a finitely generated nonnil ideal of

R. The short exact sequence 0 → I → R → R/I → 0 induces a long exact
sequence as follows:

0 = Ext1R(R,N)→ Ext1R(I,N)→ Ext2R(R/I,N)→ Ext2R(R,N) = 0.

Let 0 → N → E → K → 0 be an exact sequence where E is the injective
envelope of N . Then E also is a w-module, and hence K is a GV-torsion-
free R-module by [15, Theorem 6.1.17]. There exists a long exact sequence as
follows:

0 = Ext1R(R/I,E)→ Ext1R(R/I,K)→ Ext2R(R/I,N)→ Ext2R(R/I,E) = 0.

Thus Ext1R(I,N) ∼= Ext2R(R/I,N) ∼= Ext1R(R/I,K) is a GV-torsion module as
K is nonnil-absolutely w-pure by (6). It follows that I is a w-projective ideal
of R.

(7) ⇒ (8): Let I be a finite type nonnil ideal of R. Then there is a finitely
generated sub-ideal K of I such that K/I is GV-torsion (see [15, Proposition
6.4.2(3)]). Then I is w-isomorphic to K. We claim that K is a nonnil ideal.
Indeed, since I is nonnil, there is an non-nilpotent element s ∈ I. Thus there
is a GV-ideal J of R such that Js ⊆ K. Since J is nonnil and R is a φ-ring,
we have K is a nonnil ideal of R. By (7), K is w-projective. And thus I is
w-projective by [15, Proposition 6.7.8(1)]. �
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Obviously, any nonnil-FP-injective module is nonnil-absolutely w-pure. The
following example shows that the converse does not hold in general.

Example 3.14. Let D be a PvMD but not a Prüfer domain, K the quotient
field of D. Then the idealization R = D(+)K is a φ-PvMR but not a φ-Prüfer
ring. Note that R is a strongly φ-ring by [2, Remark 1]. Thus there is a
nonnil-absolutely w-pure divisible module M which is not nonnil-FP-injective
by Theorem 3.13 and [20, Theorem 2.13].
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org/abs/2103.08278.
[21] X. Zhang and F. Wang, On characterizations of w-coherent rings II, Comm. Algebra

49 (2021), no. 9, 3926–3940. https://doi.org/10.1080/00927872.2021.1909607

[22] X. Zhang and W. Zhao, On φ-w-flat modules and their homological dimensions, Bull.
Korean Math. Soc. 58 (2021), no. 4, 1039–1052. https://doi.org/10.4134/BKMS.

b200816
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