DOI QR코드

DOI QR Code

SOME POLYNOMIALS WITH UNIMODULAR ROOTS

  • Dubickas, Arturas (Institute of Mathematics Faculty of Mathematics and Informatics Vilnius University)
  • Received : 2021.10.01
  • Accepted : 2022.02.23
  • Published : 2022.09.30

Abstract

In this paper we consider a sequence of polynomials defined by some recurrence relation. They include, for instance, Poupard polynomials and Kreweras polynomials whose coefficients have some combinatorial interpretation and have been investigated before. Extending a recent result of Chapoton and Han we show that each polynomial of this sequence is a self-reciprocal polynomial with positive coefficients whose all roots are unimodular. Moreover, we prove that their arguments are uniformly distributed in the interval [0, 2𝜋).

Keywords

References

  1. A. Bigeni, Combinatorial interpretations of the Kreweras triangle in terms of subset tuples, Electron. J. Combin. 25 (2018), no. 4, Paper No. 4.44, 11 pp.
  2. A. Bigeni, A generalization of the Kreweras triangle through the universal sl2 weight system, J. Combin. Theory Ser. A 161 (2019), 309-326. https://doi.org/10.1016/j.jcta.2018.08.005
  3. F. Chapoton and G.-N. Han, On the roots of the Poupard and Kreweras polynomials, Mosc. J. Comb. Number Theory 9 (2020), no. 2, 163-172. https://doi.org/10.2140/moscow.2020.9.163
  4. P. Drungilas, Unimodular roots of reciprocal Littlewood polynomials, J. Korean Math. Soc. 45 (2008), no. 3, 835-840. https://doi.org/10.4134/JKMS.2008.45.3.835
  5. T. Erdelyi, Improved lower bound for the number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set, Acta Arith. 192 (2020), no. 2, 189-210. https://doi.org/10.4064/aa190204-27-5
  6. D. Foata and G.-N. Han, The doubloon polynomial triangle, Ramanujan J. 23 (2010), no. 1-3, 107-126. https://doi.org/10.1007/s11139-009-9194-9
  7. D. Foata and G.-N. Han, Tree calculus for bivariate difference equations, J. Difference Equ. Appl. 20 (2014), no. 11, 1453-1488. https://doi.org/10.1080/10236198.2014.933820
  8. R. Graham and N. Zang, Enumerating split-pair arrangements, J. Combin. Theory Ser. A 115 (2008), no. 2, 293-303. https://doi.org/10.1016/j.jcta.2007.06.003
  9. E. Kim, A family of self-inversive polynomials with concyclic zeros, J. Math. Anal. Appl. 401 (2013), no. 2, 695-701. https://doi.org/10.1016/j.jmaa.2012.12.048
  10. S.-H. Kim and C. W. Park, On the zeros of certain self-reciprocal polynomials, J. Math. Anal. Appl. 339 (2008), no. 1, 240-247. https://doi.org/10.1016/j.jmaa.2007.06.055
  11. G. Kreweras, Sur les permutations comptees par les nombres de Genocchi de 1-iere et 2-ieme espece, European J. Combin. 18 (1997), no. 1, 49-58. https://doi.org/10.1006/eujc.1995.0081
  12. P. Lakatos and L. Losonczi, Self-inversive polynomials whose zeros are on the unit circle, Publ. Math. Debrecen 65 (2004), no. 3-4, 409-420. https://doi.org/10.5486/PMD.2004.3250
  13. M. N. Lalin and C. J. Smyth, Unimodularity of zeros of self-inversive polynomials, Acta Math. Hungar. 138 (2013), no. 1-2, 85-101. https://doi.org/10.1007/s10474-012-0225-4
  14. M. N. Lalin and C. J. Smyth, Addendum to: Unimodularity of zeros of self-inversive polynomials, Acta Math. Hungar. 147 (2015), no. 1, 255-257. https://doi.org/10.1007/s10474-015-0530-9
  15. L. Losonczi, Remarks to a theorem of Sinclair and Vaaler, Math. Inequal. Appl. 23 (2020), no. 2, 647-652. https://doi.org/10.7153/mia-2020-23-52
  16. I. D. Mercer, Unimodular roots of special Littlewood polynomials, Canad. Math. Bull. 49 (2006), no. 3, 438-447. https://doi.org/10.4153/CMB-2006-043-x
  17. C. Poupard, Deux proprietes des arbres binaires ordonnes stricts, European J. Combin. 10 (1989), no. 4, 369-374. https://doi.org/10.1016/S0195-6698(89)80009-5
  18. C. D. Sinclair and J. D. Vaaler, Self-inversive polynomials with all zeros on the unit circle, in Number theory and polynomials, 312-321, London Math. Soc. Lecture Note Ser., 352, Cambridge Univ. Press, Cambridge, 2008. https://doi.org/10.1017/CBO9780511721274.020
  19. D. Stankov, The number of unimodular roots of some reciprocal polynomials, C. R. Math. Acad. Sci. Paris 358 (2020), no. 2, 159-168. https://doi.org/10.5802/crmath.28
  20. The On-Line Encyclopedia of Integer Sequences, http://oeis.org.