SOME POLYNOMIALS WITH UNIMODULAR ROOTS

Artūras Dubickas

Abstract

In this paper we consider a sequence of polynomials defined by some recurrence relation. They include, for instance, Poupard polynomials and Kreweras polynomials whose coefficients have some combinatorial interpretation and have been investigated before. Extending a recent result of Chapoton and Han we show that each polynomial of this sequence is a self-reciprocal polynomial with positive coefficients whose all roots are unimodular. Moreover, we prove that their arguments are uniformly distributed in the interval $[0,2 \pi)$.

1. Introduction

A polynomial

$$
F(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}, a_{n} \neq 0
$$

of degree n is called self-reciprocal or palindromic if $a_{i}=a_{n-i}$ for every $i=$ $0,1, \ldots,\lfloor n / 2\rfloor$. Equivalently, $F(x)=x^{n} F(1 / x)$. For a self-reciprocal polynomial F of degree n the polynomial $\left(x^{n+4}+1\right) F(1)-2 x^{2} F(x)$ has multiplicity at least 2 at $x=1$, since $F^{\prime}(1)=n F(1) / 2$. Consequently, if $F(1) \neq 0$, then

$$
\begin{equation*}
\frac{\left(x^{n+4}+1\right) F(1)-2 x^{2} F(x)}{(x-1)^{2}} \tag{1}
\end{equation*}
$$

is a polynomial of degree $n+2$ with leading coefficient $F(1)$. Inserting $x \mapsto 1 / x$ into (1) and multiplying it by x^{n+2}, we get the same polynomial in view of $F(x)=x^{n} F(1 / x)$. Thus, the polynomial (1) is self-reciprocal.

Consider a sequence of polynomials defined by $F_{0}(x)=1$, and

$$
\begin{equation*}
F_{n}(x)=\frac{\left(x^{2 n+2}+1\right) F_{n-1}(1)-2 x^{2} F_{n-1}(x)}{(x-1)^{2}} \tag{2}
\end{equation*}
$$

for $n=1,2,3, \ldots$. Recently, in [3] Chapoton and Han showed that for each $n \geq 1$ the polynomial F_{n} is a self-reciprocal polynomial with positive integer coefficients such that $\operatorname{deg} F_{n}=2 n$, and all $2 n$ roots of F_{n} lie on the unit circle. The coefficients of those polynomials appear in a paper of Poupard

[^0][17] and have some combinatorial interpretation: see the table [17, p. 370] which corresponds to the coefficients of $F_{0}(x)=1, F_{1}(x)=x^{2}+2 x+1$, $F_{2}(x)=4 x^{4}+8 x^{3}+10 x^{2}+8 x+4$, etc. The consecutive coefficients of these polynomials form the sequence A008301 in OEIS [20]. See also [6-8] for some calculations with the numbers in the Poupard triangle and their generalizations. In [3], the polynomials (2) are called Poupard polynomials.

The proof of unimodularity of the roots of Poupard polynomials in [3] is based on a criterion of Lakatos and Losonczi [12]. See also [13] for a more general result, [14] for a historical context, [15, 18] for some other criteria for unimodularity of roots of self-inversive polynomials, and, for example, [4, 5, 9, $10,16,19]$ for some other results concerning polynomials with unimodular roots.

By a similar argument based on [12], in [3] the unimodularity of roots of the polynomials $G_{n}, n=0,1,2, \ldots$, of degree $2 n+1$ defined by $G_{0}(x)=x+1$ and

$$
G_{n}(x)=\frac{\left(x^{2 n+3}+1\right) G_{n-1}(1)-2 x^{2} G_{n-1}(x)}{(x-1)^{2}}
$$

for $n=1,2,3, \ldots$ was established. Since G_{n} has a root at $x=-1$ for each $n \geq 0$, by setting $H_{n}(x)=G_{n}(x) /(x+1)$ we get the sequence of polynomials $\left(H_{n}\right)_{n=0}^{\infty}$, where $H_{0}(x)=1$ and

$$
\begin{equation*}
H_{n}(x)=\frac{2 H_{n-1}(1)\left(x^{2 n+3}+1\right) /(x+1)-2 x^{2} H_{n-1}(x)}{(x-1)^{2}} \tag{3}
\end{equation*}
$$

for $n=1,2,3, \ldots$. The coefficients of the polynomials $2^{1-n} H_{n}(x)$ appear in a paper of Kreweras [11] and have some combinatorial interpretation too. The Kreweras triangle have been recently investigated in $[1,2]$.

It is worth mentioning that (as observed in [3]) the constant terms of Poupard polynomials and Kreweras polynomials are related to the reduced tangent numbers and so-called Genocchi numbers respectively: see the sequences A002105 and A001469 in [20].

In this paper we consider a sequence of polynomials $\left(F_{n}\right)_{n=0}^{\infty}$ defined by $F_{0}(x)=c_{0}>0$ and

$$
\begin{equation*}
F_{n}(x)=u_{n} \frac{\left(x^{2 n+2}+1\right) F_{n-1}(1)-2 x^{2} F_{n-1}(x)}{(x-1)^{2}}+v_{n} \frac{x^{2 n+2}-1}{x^{2}-1} \tag{4}
\end{equation*}
$$

for $n=1,2,3, \ldots$, where $\left(u_{n}\right)_{n=1}^{\infty}$ is a sequence of positive numbers and $\left(v_{n}\right)_{n=1}^{\infty}$ is a sequence of nonnegative numbers.

Note that the polynomials (4) include all those defined by (2) and (3). Indeed, selecting in (4) $c_{0}=1, u_{n}=1$ and $v_{n}=0$ for each $n \geq 1$, we get the sequence of Poupard polynomials (1), while the choice $c_{0}=1, u_{n}=1$ and $v_{n}=H_{n-1}(1)$ for $n \geq 1$ leads to the polynomials (3).

With the above assumptions on $u_{n}, v_{n}(n \geq 1)$ we will not only show that F_{n} defined in (4) is a self-reciprocal polynomial with positive coefficients whose roots are unimodular, but also that the roots of F_{n} are uniformly distributed along the unit circle as $n \rightarrow \infty$.

Theorem 1.1. For each $n \in \mathbb{N}$ the polynomial defined by (4) is a self-reciprocal polynomial of degree $2 n$ with positive coefficients if $c_{0}>0, u_{i}>0$ and $v_{i} \geq 0$ for $i=1, \ldots, n$. If $c_{0}, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in \mathbb{Z}$, then $F_{n} \in \mathbb{Z}[x]$.

Furthermore, for each $n \in \mathbb{N}$ all $2 n$ roots of F_{n} are unimodular. More precisely, for $n \geq 2$ they are of the form $e^{ \pm i \psi_{1}}, \ldots, e^{ \pm i \psi_{n}}$, with arguments

$$
0<\psi_{1}<\cdots<\psi_{n}<\pi
$$

satisfying

$$
\begin{equation*}
\psi_{2 k-1} \in\left(\frac{\pi(2 k-1)}{n+1}, \frac{2 \pi k}{n+1}\right) \tag{5}
\end{equation*}
$$

for $k=1, \ldots,\lfloor(n+1) / 2\rfloor$ and

$$
\begin{equation*}
\psi_{2 k} \in\left(\frac{2 \pi k}{n+1}, \frac{\pi(2 k+1)}{n+1}\right) \tag{6}
\end{equation*}
$$

for $k=1, \ldots,\lfloor n / 2\rfloor$.
Note that for $n=1$ the polynomial F_{1} may have a double root, and so condition $n \geq 2$ is necessary. Indeed, by (4), we find that

$$
F_{1}(x)=u_{1} c_{0}(x+1)^{2}+v_{1}\left(x^{2}+1\right) .
$$

It is a self-reciprocal quadratic polynomial in $\mathbb{R}[x]$ with nonpositive discriminant, so it has two unimodular roots. However, in the case when $v_{1}=0$ it has a double root at $x=-1$.

The proof of the first assertion of the theorem (without claiming positivity of the coefficients of F_{n}) is straightforward. Fix $n \geq 1$ and suppose F_{n-1} is a self-reciprocal polynomial of degree $2 n-2$. Then, the first summand on the right hand side of (4) is a degree $2 n$ self-reciprocal polynomial by (1). The second summand, $v_{n}\left(1+x^{2}+\cdots+x^{2 n}\right)$, is either a self-reciprocal polynomial of degree $2 n$ or zero (when $v_{n}=0$), which implies the first claim of the theorem by induction on n. Also, if $F_{n-1} \in \mathbb{Z}[x]$ and $u_{n}, v_{n} \in \mathbb{Z}$, then $F_{n} \in \mathbb{Z}[x]$ by (4). This proves the second assertion of the theorem, namely, $F_{n} \in \mathbb{Z}[x]$.

In all what follows we will prove that the coefficients of F_{n} are all positive and also that the roots of F_{n} are unimodular with arguments as indicated in (5) and (6). There are indeed n arguments in $(0, \pi)$, since $\lfloor(n+1) 2\rfloor+\lfloor n / 2\rfloor=n$.

In the next section we first prove a useful lemma and then state the remaining part of Theorem 1.1 in terms of cosine polynomials (see Theorem 2.2). In Section 3 we will complete the proof of Theorem 2.2 and so that of Theorem 1.1.

2. Reduction of the problem to cosine trigonometric polynomials

Throughout, for $n \geq 0$ let \mathcal{T}_{n} be the set of cosine trigonometric polynomials

$$
a_{n} \cos (n x)+a_{n-1} \cos ((n-1) x)+\cdots+a_{0}
$$

with positive coefficients $a_{n}, a_{n-1}, \ldots, a_{0}$. Set

$$
\phi_{n}(x)= \begin{cases}\frac{\sin ((n+1) x)}{\sin (x)} & \text { if } \quad x \neq \pi k, k \in \mathbb{Z} \tag{7}\\ (n+1)(-1)^{n k} & \text { if } \quad x=\pi k, k \in \mathbb{Z}\end{cases}
$$

By L'Hôpital's rule, the function ϕ_{n} is continuous for each $n \geq 0$. Likewise, for $n \geq j \geq 0$ we define the function

$$
\phi_{n, j}(x)= \begin{cases}\frac{\cos ((n+1) x)-\cos (j x)}{\cos (x)-1} & \text { if } \quad x \neq 2 \pi k, k \in \mathbb{Z} \tag{8}\\ (n+1)^{2}-j^{2} & \text { if } \quad x=2 \pi k, k \in \mathbb{Z}\end{cases}
$$

Applying L'Hôpital's rule twice, we see that the function $\phi_{n, j}$ is continuous.
Now, we will prove the following lemma:
Lemma 2.1. For $n>j \geq 0$ the functions ϕ_{n} and $\phi_{n, j}$ are cosine trigonometric polynomials of degree n. Moreover, ϕ_{n} has nonnegative coefficients and $\phi_{n, j} \in$ \mathcal{T}_{n}.

Proof. Note that for $x \neq \pi k, k \in \mathbb{Z}$,

$$
\begin{equation*}
\frac{\sin ((n+1) x)}{\sin (x)}=e^{i n x}+e^{i(n-2) x}+\cdots+e^{-i(n-2) x}+e^{-i n x} \tag{9}
\end{equation*}
$$

since both sides of this identity are equal to $\frac{e^{i(n+1) x}-e^{-i(n+1) x}}{e^{i x}-e^{-i x}}$. The right hand side of (9) can be written as

$$
\begin{equation*}
2 \cos (n x)+2 \cos ((n-2) x)+\cdots+2 \cos (x) \tag{10}
\end{equation*}
$$

for n odd, and

$$
\begin{equation*}
2 \cos (n x)+2 \cos ((n-2) x)+\cdots+2 \cos (2 x)+1 \tag{11}
\end{equation*}
$$

for n even.
At $x=\pi k$ each of $(n+1) / 2$ summands of (10) is equal to $2(-1)^{k}$, since n is odd. So the sum on the right hand side of (9) is $(n+1)(-1)^{k}$, which equals $(n+1)(-1)^{n k}$. Similarly, at $x=\pi k$ each of $n / 2$ first summands of (11) is equal to 2 , since n is even. Thus, the sum on the right hand side of (9) is $2 \cdot(n / 2)+1=n+1=(n+1)(-1)^{n k}$. Therefore, in view of (7) and (9) we obtain

$$
\begin{equation*}
\phi_{n}(x)=e^{i n x}+e^{i(n-2) x}+\cdots+e^{-i(n-2) x}+e^{-i n x} \tag{12}
\end{equation*}
$$

for each $n \geq 0$ and each $x \in \mathbb{R}$. By (10), (11), this implies that

$$
\phi_{n}(x)=2 \cos (n x)+2 \cos ((n-2) x)+\cdots+2 \cos (x)
$$

for n odd, and

$$
\phi_{n}(x)=2 \cos (n x)+2 \cos ((n-2) x)+\cdots+2 \cos (2 x)+1
$$

for n even. In both cases, n even or odd, ϕ_{n} is a cosine trigonometric polynomial of degree n with nonnegative coefficients.

In order to prove that $\phi_{n, j}$ is in \mathcal{T}_{n}, we fix two positive integers m and s satisfying $m+s=2 n$. Consider the product of two sums

$$
e^{i m x / 2}+e^{i(m-2) x / 2}+\cdots+e^{-i(m-2) x / 2}+e^{-i m x / 2}=\phi_{m}(x / 2)
$$

and

$$
e^{i s x / 2}+e^{i(s-2) x / 2}+\cdots+e^{-i(s-2) x / 2}+e^{-i s x / 2}=\phi_{s}(x / 2)
$$

(see (12)). Note that the coefficient for each $e^{ \pm i \ell x}$, where $0 \leq \ell \leq n$, will be positive, and the coefficient for $e^{i \ell x}, 1 \leq \ell \leq n$, is the same as that for $e^{-i \ell x}$. Consequently,

$$
\begin{equation*}
\phi_{m}(x / 2) \phi_{s}(x / 2) \in \mathcal{T}_{n} \tag{13}
\end{equation*}
$$

for any positive integers m, s satisfying $m+s=2 n$. Observe that, by (9) and (12), for $x \neq 2 \pi k, k \in \mathbb{Z}$, we have

$$
\begin{aligned}
\phi_{m}(x / 2) \phi_{s}(x / 2) & =\frac{\sin ((m+1) x / 2) \sin ((s+1) x / 2)}{\sin ^{2}(x / 2)} \\
& =\frac{\cos ((m+s+2) x / 2)-\cos ((m-s) x / 2)}{\cos (x)-1} .
\end{aligned}
$$

In particular, selecting $m=n+j$ and $s=n-j$, we find that

$$
\frac{\cos ((n+1) x)-\cos (j x)}{\cos (x)-1}=\phi_{n+j}(x / 2) \phi_{n-j}(x / 2)
$$

At $x=2 \pi k, k \in \mathbb{Z}$, by (7), we get

$$
\begin{aligned}
\phi_{n+j}(\pi k) \phi_{n-j}(\pi k) & =(n+j+1)(-1)^{(n+j) k}(n-j+1)(-1)^{(n-j) k} \\
& =(n+j+1)(n-j+1)=(n+1)^{2}-j^{2}
\end{aligned}
$$

Now, taking into account (8) and (13) we conclude that

$$
\phi_{n, j}(x)=\phi_{n+j}(x / 2) \phi_{n-j}(x / 2) \in \mathcal{T}_{n} .
$$

This completes the proof of the lemma.
Suppose $F_{n} \in \mathbb{R}[x]$ is a self-reciprocal polynomial of degree $2 n$. Then,

$$
\begin{equation*}
U_{n}(x)=e^{-i n x} F_{n}\left(e^{i x}\right) \tag{14}
\end{equation*}
$$

is a cosine trigonometric polynomial of degree n. If U_{n} has n roots in $(0, \pi)$, say $0<\psi_{1}<\cdots<\psi_{n}<\pi$, then $e^{ \pm i \psi_{1}}, \ldots, e^{ \pm i \psi_{n}}$ are the roots of F_{n} and vice versa. In particular, all $2 n$ roots of F_{n} are unimodular if and only if U_{n} has $2 n$ roots in $[0,2 \pi)$. The coefficients of F_{n} are positive if and only if $U_{n} \in \mathcal{T}_{n}$.

Inserting $e^{i x}$ instead of x into (4) and using (14), by the identities

$$
\begin{aligned}
\frac{e^{2(n+1) i x}+1}{\left(e^{i x}-1\right)^{2}} F_{n-1}(1) & =e^{i n x} F_{n-1}(1) \frac{2 \cos ((n+1) x)}{2 \cos (x)-2} \\
& =e^{i n x} U_{n-1}(0) \frac{\cos ((n+1) x)}{\cos (x)-1}
\end{aligned}
$$

$$
\frac{2 e^{2 i x} F_{n-1}\left(e^{i x}\right)}{\left(e^{i x}-1\right)^{2}}=e^{i n x} \frac{U_{n-1}(x)}{\cos (x)-1}
$$

and

$$
\frac{e^{2(n+1) i x}-1}{e^{2 i x}-1}=e^{i n x} \frac{\sin ((n+1) x)}{\sin (x)}
$$

we obtain

$$
U_{n}(x)=u_{n} \frac{\cos ((n+1) x) U_{n-1}(0)-U_{n-1}(x)}{\cos (x)-1}+v_{n} \frac{\sin ((n+1) x)}{\sin (x)}
$$

when $x \neq \pi k, k \in \mathbb{Z}$. Here, for $x=\pi k, k \in \mathbb{Z}$, the second summand is defined by (9), (12), while for $x=2 \pi k, k \in \mathbb{Z}$, the function

$$
\frac{U_{n-1}(0) \cos ((n+1) x)-U_{n-1}(x)}{\cos (x)-1}
$$

is defined by continuity (see also (18) for an explicit expression in terms of (7), (8) and the coefficients of U_{n-1}).

The unimodularity of the roots of F_{n} for $n=1$ has been explained below Theorem 1.1. The remaining parts of Theorem 1.1 follow from the next theorem.

Theorem 2.2. Let $\left(u_{n}\right)_{n=1}^{\infty}$ be a sequence of positive real numbers, and let $\left(v_{n}\right)_{n=1}^{\infty}$ be a sequence of nonnegative real numbers. Consider the sequence defined by $U_{0}(x)=c_{0}>0$ and

$$
\begin{equation*}
U_{n}(x)=u_{n} \frac{U_{n-1}(0) \cos ((n+1) x)-U_{n-1}(x)}{\cos (x)-1}+v_{n} \phi_{n}(x) \tag{15}
\end{equation*}
$$

for $n=1,2,3, \ldots$ Then,

$$
\begin{equation*}
U_{n} \in \mathcal{T}_{n} \tag{16}
\end{equation*}
$$

for each $n \geq 0$. Furthermore, for every $n \geq 2$ this cosine trigonometric polynomial U_{n} in the interval $[-\pi, \pi)$ has $2 n$ roots $\pm \psi_{1}, \ldots, \pm \psi_{n}$, where $0<\psi_{1}<$ $\cdots<\psi_{n}<\pi$ belong to the intervals as described in (5) and (6).

3. Proof of Theorem 2.2

The claim (16) is trivial for $n=0$. Fix $n \in \mathbb{N}$ and assume that $U_{n-1} \in \mathcal{T}_{n-1}$, that is,

$$
U_{n-1}(x)=b_{n-1} \cos ((n-1) x)+\cdots+b_{1} \cos (x)+b_{0}
$$

where $b_{n-1}, \ldots, b_{1}, b_{0}>0$.
By Lemma 2.1, $v_{n} \phi_{n}(x)$ is a degree n cosine trigonometric polynomial with nonnegative coefficients (2,0 and possibly 1 if n is even) or zero identically (if $\left.v_{n}=0\right)$. So, in order to show that $U_{n} \in \mathcal{T}_{n}$ it suffices to prove that

$$
\begin{equation*}
\frac{U_{n-1}(0) \cos ((n+1) x)-U_{n-1}(x)}{\cos (x)-1} \in \mathcal{T}_{n} . \tag{17}
\end{equation*}
$$

Indeed, from $U_{n-1}(0)=\sum_{k=0}^{n-1} b_{k}$ it follows that

$$
\begin{aligned}
\frac{U_{n-1}(0) \cos ((n+1) x)-U_{n-1}(x)}{\cos (x)-1} & =\sum_{j=0}^{n-1} b_{j} \frac{\cos ((n+1) x)-\cos (j x)}{\cos (x)-1} \\
& =\sum_{j=0}^{n-1} b_{j} \phi_{n, j}(x) \in \mathcal{T}_{n}
\end{aligned}
$$

by (8) and Lemma 2.1. This finishes the proof of (17) and so that of (16).
Note that, by (15), we have

$$
\begin{equation*}
U_{n}(x)=u_{n} \sum_{j=0}^{n-1} b_{j} \phi_{n, j}(x)+v_{n} \phi_{n}(x) . \tag{18}
\end{equation*}
$$

Next, we will investigate the cosine polynomial U_{n} in the interval $[0, \pi]$ for $n \geq 2$. Using (7), (8) and (18) at $x=0$ we derive that

$$
U_{n}(0)=u_{n} \sum_{j=0}^{n-1} b_{j}\left((n+1)^{2}-j^{2}\right)+v_{n}(n+1)>0
$$

Set

$$
y_{k}=\frac{2 \pi k}{n+1} \quad \text { and } \quad z_{k}=\frac{\pi(2 k+1)}{n+1} \quad \text { for } \quad k=0,1, \ldots, n .
$$

Then,

$$
0=y_{0}<z_{0}<y_{1}<z_{1}<\cdots<y_{n}<z_{n}<2 \pi .
$$

We have just shown that $U_{n}\left(y_{0}\right)=U_{n}(0)>0$. We next claim that $U_{n}\left(y_{k}\right)<0$ for $k=1,2, \ldots, n$ and $U_{n}\left(z_{k}\right)>0$ for $k=0,1, \ldots, n$.

For $k=1, \ldots, n$ it is clear that

$$
\phi_{n}\left(y_{k}\right)=\frac{\sin \left((n+1) y_{k}\right)}{\sin \left(y_{k}\right)}=0
$$

unless $y_{k}=\pi$. This is only possible if $n+1$ is even and $k=(n+1) / 2$. Then, by (7) (with $k=1$), $\phi_{n}(\pi)=(n+1)(-1)^{n}=-n-1$. So, for each $k=1, \ldots, n$ we have $v_{n} \psi_{n}\left(y_{k}\right) \leq 0$.

Therefore, in order to show that $U_{n}\left(y_{k}\right)<0$ for $k=1, \ldots, n$, by (15), $\cos \left((n+1) y_{k}\right)=1$ and $\cos \left(y_{k}\right)-1<0$, it suffices to verify the inequality $U_{n-1}(0)>U_{n-1}\left(y_{k}\right)$. This is indeed the case in view of $n \geq 2$ and $U_{n-1} \in \mathcal{T}_{n-1}$, since then

$$
U_{n-1}(0)=\sum_{j=0}^{n-1} b_{j}>\sum_{j=0}^{n-1} b_{j} \cos \left(j y_{k}\right)=U_{n-1}\left(y_{k}\right)
$$

which is true by $b_{n-1}, \ldots, b_{1}, b_{0}>0$ and $\cos \left(y_{k}\right)<1$. Hence, $U_{n}\left(y_{k}\right)<0$ for $k=1, \ldots, n$.

The proof of the inequality $U_{n}\left(z_{k}\right)>0$ for $k=0,1, \ldots, n$ is similar. It is clear that $\phi_{n}\left(z_{k}\right)=0$, unless $z_{k}=\pi$. In that case, n is even and $k=n / 2$. Then, by $(7), \phi_{n}(\pi)=n+1$. So, $v_{n} \psi_{n}\left(z_{k}\right) \geq 0$ for each $k=0,1, \ldots, n$.

Now, as $\cos \left((n+1) z_{k}\right)=-1$, in order to show that $U_{n}\left(z_{k}\right)>0$ for $k=$ $0,1, \ldots, n$, by (15) and $\cos \left(z_{k}\right)-1<0$, it suffices to verify the inequality

$$
U_{n-1}(0)+U_{n-1}\left(z_{k}\right)=\sum_{j=0}^{n-1} b_{j}\left(1+\cos \left(j z_{k}\right)\right)>0
$$

This is true in view of $b_{n-1}, \ldots, b_{1}, b_{0}>0$.
The inequalities $U_{n}\left(y_{k}\right)<0, k=1,2, \ldots, n$, and $U_{n}\left(z_{k}\right)>0, k=0,1, \ldots, n$, imply that $U_{n}(x)$ has a root in each of the open intervals

$$
\left(z_{0}, y_{1}\right),\left(y_{1}, z_{1}\right),\left(z_{1}, y_{2}\right), \ldots,\left(z_{n-1}, y_{n}\right),\left(y_{n}, z_{n}\right)
$$

Consequently, the intervals lying in $[0, \pi]$ that contain a root of U_{n} can be described as in (5) and (6). In particular, the interval $(0, \pi)$ contains precisely $\lfloor(n+1) 2\rfloor+\lfloor n / 2\rfloor=n$ roots of U_{n}. Finally, since $U_{n} \in \mathcal{T}_{n}$, any $\psi \in(0, \pi)$ is a root of U_{n} whenever $-\psi$ is a root of U_{n}.

References

[1] A. Bigeni, Combinatorial interpretations of the Kreweras triangle in terms of subset tuples, Electron. J. Combin. 25 (2018), no. 4, Paper No. 4.44, 11 pp.
[2] A. Bigeni, A generalization of the Kreweras triangle through the universal sl_{2} weight system, J. Combin. Theory Ser. A 161 (2019), 309-326. https://doi.org/10.1016/j. jcta.2018.08.005
[3] F. Chapoton and G.-N. Han, On the roots of the Poupard and Kreweras polynomials, Mosc. J. Comb. Number Theory 9 (2020), no. 2, 163-172. https://doi.org/10.2140/ moscow.2020.9.163
[4] P. Drungilas, Unimodular roots of reciprocal Littlewood polynomials, J. Korean Math. Soc. 45 (2008), no. 3, 835-840. https://doi.org/10.4134/JKMS.2008.45.3.835
[5] T. Erdélyi, Improved lower bound for the number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set, Acta Arith. 192 (2020), no. 2, 189-210. https://doi.org/10.4064/aa190204-27-5
[6] D. Foata and G.-N. Han, The doubloon polynomial triangle, Ramanujan J. 23 (2010), no. 1-3, 107-126. https://doi.org/10.1007/s11139-009-9194-9
[7] D. Foata and G.-N. Han, Tree calculus for bivariate difference equations, J. Difference Equ. Appl. 20 (2014), no. 11, 1453-1488. https://doi.org/10.1080/10236198. 2014. 933820
[8] R. Graham and N. Zang, Enumerating split-pair arrangements, J. Combin. Theory Ser. A 115 (2008), no. 2, 293-303. https://doi.org/10.1016/j.jcta.2007.06.003
[9] E. Kim, A family of self-inversive polynomials with concyclic zeros, J. Math. Anal. Appl. 401 (2013), no. 2, 695-701. https://doi.org/10.1016/j.jmaa.2012.12.048
[10] S.-H. Kim and C. W. Park, On the zeros of certain self-reciprocal polynomials, J. Math. Anal. Appl. 339 (2008), no. 1, 240-247. https://doi.org/10.1016/j.jmaa.2007.06.055
[11] G. Kreweras, Sur les permutations comptées par les nombres de Genocchi de 1-ière et 2-ième espèce, European J. Combin. 18 (1997), no. 1, 49-58. https://doi.org/10. 1006/eujc. 1995.0081
[12] P. Lakatos and L. Losonczi, Self-inversive polynomials whose zeros are on the unit circle, Publ. Math. Debrecen 65 (2004), no. 3-4, 409-420.
[13] M. N. Lalín and C. J. Smyth, Unimodularity of zeros of self-inversive polynomials, Acta Math. Hungar. 138 (2013), no. 1-2, 85-101. https://doi.org/10.1007/s10474-012-0225-4
[14] M. N. Lalín and C. J. Smyth, Addendum to: Unimodularity of zeros of self-inversive polynomials, Acta Math. Hungar. 147 (2015), no. 1, 255-257. https://doi.org/10. 1007/s10474-015-0530-9
[15] L. Losonczi, Remarks to a theorem of Sinclair and Vaaler, Math. Inequal. Appl. 23 (2020), no. 2, 647-652. https://doi.org/10.7153/mia-2020-23-52
[16] I. D. Mercer, Unimodular roots of special Littlewood polynomials, Canad. Math. Bull. 49 (2006), no. 3, 438-447. https://doi.org/10.4153/CMB-2006-043-x
[17] C. Poupard, Deux propriétés des arbres binaires ordonnés stricts, European J. Combin. 10 (1989), no. 4, 369-374. https://doi.org/10.1016/S0195-6698(89)80009-5
[18] C. D. Sinclair and J. D. Vaaler, Self-inversive polynomials with all zeros on the unit circle, in Number theory and polynomials, 312-321, London Math. Soc. Lecture Note Ser., 352, Cambridge Univ. Press, Cambridge, 2008. https://doi.org/10.1017/ CB09780511721274.020
[19] D. Stankov, The number of unimodular roots of some reciprocal polynomials, C. R. Math. Acad. Sci. Paris 358 (2020), no. 2, 159-168. https://doi.org/10.5802/crmath. 28
[20] The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
Artūras Dubickas
Institute of Mathematics
Faculty of Mathematics and Informatics
Vilnius University
Naugarduko 24
LT-03225 Vilnius, Lithuania
Email address: arturas.dubickas@mif.vu.lt

[^0]: Received October 1, 2021; Revised January 14, 2022; Accepted February 23, 2022.
 2020 Mathematics Subject Classification. Primary 12D10, 26C10, 42A05.
 Key words and phrases. Self-reciprocal polynomials, unimodular roots, trigonometric polynomials.

