DOI QR코드

DOI QR Code

Implementation of an open API-based virtual network provisioning automation platform for large-scale data transfer

대용량 데이터 전송을 위한 오픈 API 기반 가상 네트워크 프로비저닝 자동화 플랫폼 구현

  • Received : 2022.08.10
  • Accepted : 2022.08.29
  • Published : 2022.09.30

Abstract

Currently, advanced national research network groups are continuously conducting R&D for the requirement to provide SDN/NFV-based network automation and intelligence technology for R&E users. In addition, the requirement for providing large-scale data transmission with the high performance networking facility, compared to general network environments, is gradually increasing in the advanced national research networks. Accordingly, in this paper, we propose an open API-based virtual network provisioning automation platform for large data transmission researched and developed to respond to the networking requirements of the national research network and present the implementation results. The platform includes the KREONET-S VDN system that provides SDN-based network virtualization technology, and the Kubernetes system that provides container-oriented server virtualization technology, and the Globus Online, a high-performance data transmission system. In this paper, the environment configurations, the system implemetation results for the interworking between the heterogeneous systems, and the automated virtual network provisioning implementation results are presented.

현재 선도국가연구망 그룹에서 SDN/NFV 기반의 네트워크 자동화·지능화 기술을 사용자에게 서비스 형태로 제공하기 위한 요구가 지속적으로 발생함에 따라 관련 연구개발이 추진되고 있다. 또한, 선도국가연구망에서는 일반 네트워크 환경보다 대용량 데이터 전송을 고성능으로 제공해야 한다는 요구사항이 점차 더 커지고 있는 실정이다. 이에 따라, 본 논문에서는 이러한 국가연구망의 네트워킹 요구사항들에 대응하기 위하여 연구 개발한 대용량 데이터 전송을 위한 오픈 API 기반 가상 네트워크 프로비저닝 자동화 플랫폼을 제안하고 이의 구현 결과를 제시한다. 해당 플랫폼에는 SDN 기반의 네트워크 가상화 기술을 제공하는 KREONET-S의 VDN 시스템, 컨테이너 중심의 서버 가상화 기술을 제공하는 Kubernetes 시스템, 그리고 고성능 데이터 전송 시스템인 Globus Online이 포함되어 있다. 본 논문에서는 이러한 상이한 시스템 간의 연계를 위한 환경 설정 및 시스템 연동 결과, 가상 네트워크 프로비저닝 자동화 구현 결과 및 성능에 대하여 보인다.

Keywords

Acknowledgement

This work was supported in part by Institute of Information & communications Technology Planning & Evaluation (IITP, Development of virtual network management technology based on artificial intelligence) under Grant 2018-0-00749.

References

  1. KREONET-S Website [Online]. Available: http://www.kreonet-s.net/.
  2. KREONET Website [Online]. Available: http://www.kreonet.net/.
  3. D. K. Kim and Y. H. Kim, "Dynamic Virtual Network Slicing and Orchestration for Selective MEC Services over Wide-Area SDN," Algorithms, vol. 13. no. 10, pp. 245, Sep. 2020. https://doi.org/10.3390/a13100245
  4. Open Network Operating System Website [Online]. Available: http://onosproject.org/.
  5. P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O'Connor, P. Radoslavov, W. Snow, and G. Parulkar, "ONOS: towards an open, distributed SDN OS," in Proceedings of the third workshop on Hot topics in software defined networking, Chicago: IL, USA, pp. 1-6, Aug. 2014.
  6. Y. H. Kim, K. H. Kim, and D. K. Kim "Design and implementation of virtually dedicated network service in SD-WAN based advanced research & educational (R&E) network," Journal of Korean Institute of Communications and Information Sciences, vol. 42. no. 10, pp. 2050-2064, Oct. 2017. https://doi.org/10.7840/kics.2017.42.10.2050
  7. D. K. Kim, Y. H. Kim, K. H. Kim, and J. M. Gil, "Cloud-Centric and Logically Isolated Virtual Network Environment Based on Software-Defined Wide Area Network," Sustainability, vol. 9. no. 12, pp. 2382, Dec. 2017. https://doi.org/10.3390/su9122382
  8. E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, "The Science DMZ: A network design pattern for data-intensive science," Scientific Programming, vol. 22, no. 2, pp. 173-185, Aug. 2014. https://doi.org/10.1155/2014/701405
  9. J. Crichigno, E. Bou-Harb, and N. Ghani, "A Comprehensive Tutorial on Science DMZ," IEEE Communications Surveys & Tutorials, vol. 21. no. 2, pp. 2041-2078, Oct. 2018.
  10. Q. Lu, L. Zhang, S. Sasidharan, W. Wu, P. DeMar, C. Guok, J. Macauley, I. Monga, S. Yu, J. H. Chen, J. Mambretti, J. Kim, S. -Y. Noh, X. Yang, T. Lehman, and G. Liu, "BigData Express: Toward Schedulable, Predictable, and High-Performance Data Transfer," in 2018 IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS), pp. 75-84, Dallas: TX, USA, 2018.
  11. M. Kiran, S. Campbell, F. B. Wala, N. Buraglio, and I. Monga, "Machine learning-based analysis of COVID-19 pandemic impact on US research networks," ACM SIGCOMM Computer Communication Review, vol. 51. no. 4, pp. 23-35, Oct. 2021. https://doi.org/10.1145/3503954.3503958
  12. Kubernetes Website [Online]. Available: https://kubernetes.io/.
  13. D. Bernstein, "Containers and Cloud: From LXC to Docker to Kubernetes," IEEE cloud computing, vol. 1 no. 3, pp. 81-84, Sep. 2014. https://doi.org/10.1109/MCC.2014.51
  14. Globus Online Website [Online]. Available: https://www.globus.org/tags/globus-online.
  15. Docker Website [Online]. Available: https://www.docker.com.
  16. Oauth Website [Online]. Available: https://oauth.net/2/.
  17. Y. H. Kim and D. K. Kim, "Implementation of an Orchestration System for Distributed Cloud Environments Based on Software Defined Networking," Journal of Korean Institute of Communications and Information Sciences, vol. 46. no. 2, pp. 280-292, Feb. 2021. https://doi.org/10.7840/kics.2021.46.2.280