DOI QR코드

DOI QR Code

Vibrational behavior of exponentially graded joined conical-conical shells

  • Rezaiee-Pajand, Mohammad (Department of Civil Engineering, Ferdowsi University of Mashhad) ;
  • Sobhani, Emad (Department of Civil Engineering, Ferdowsi University of Mashhad) ;
  • Masoodi, Amir R. (Department of Civil Engineering, Ferdowsi University of Mashhad)
  • 투고 : 2021.01.18
  • 심사 : 2022.05.17
  • 발행 : 2022.06.10

초록

This article is dedicated to predict the natural frequencies of joined conical shell structures made of Functionally Graded Material (FGM). The structure includes two conical segments. The equivalent material properties are found by using the rule of mixture based on Voigt model. In addition, three well-known patterns are employed for distribution of material properties throughout the thickness of the structure. The main objective of the present research is to propose a novel exponential pattern and obtain the related equivalent material properties. Furthermore, the Donnell type shell theory is used to obtain the governing equations of motion. Note that these equations are obtained by employing First-order Shear Deformation Theory (FSDT). In order to discretize the governing system of differential equations, well-known and efficient semi-analytical scheme, namely Generalized Differential Quadrature Method (GDQM), is utilized. Different boundary conditions are considered for various types of single and joined conical shell structures. Moreover, an applicable modification is considered for the continuity conditions at intersection position. In the first step, the proposed formulation is verified by solving some well-known benchmark problems. Besides, some new numerical examples are analyzed to show the accuracy and high capability of the suggested technique. Additionally, several geometric and material parameters are studied numerically.

키워드

과제정보

This study was not funded by any company.

참고문헌

  1. Aris, H. and H. Ahmadi (2020), "Nonlinear vibration analysis of FGM truncated conical shells subjected to harmonic excitation in thermal environment", Mech. Res. Commun., 104, 103499. https://doi.org/10.1016/j.mechrescom.2020.103499.
  2. Artioli, E. and E. Viola (2005), "Static analysis of sheardeformable shells of revolution via GDQ method", Struct. Eng. Mech., 19(4), 459-475. https://doi.org/10.12989/sem.2005.19.4.459.
  3. Bagheri, H., Kiani, Y. and Eslami, M. (2018), "Free vibration of joined conical-cylindrical-conical shells", Acta Mechanica, 229(7), 2751-2764. https://doi.org/10.1007/s00707-018-2133-3.
  4. Bagheri, H., Kiani, Y. and Eslami, M.R. (2017), "Free vibration of conical shells with intermediate ring support", Aeros. Sci. Technol., 69, 321-332, https://doi.org/10.1016/j.ast.2017.06.037.
  5. Bagheri, H., Kiani, Y. and Eslami, M.R. (2017), "Free vibration of joined conical-conical shells", Thin-Walled Struct., 120, 446-457, https://doi.org/10.1016/j.tws.2017.06.032.
  6. Caresta, M. and Kessissoglou, N.J. (2010), "Free vibrational characteristics of isotropic coupled cylindrical-conical shells", J. Sound Vib. 329(6), 733-751. https://doi.org/10.1016/j.jsv.2009.10.003.
  7. Chen, J.C. and Babcock, C.D. (1975), "Nonlinear vibration of cylindrical shells", AiAA J., 13(7), 868-876. https://doi.org/10.2514/3.60462.
  8. Civalek, O. (2006), "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Pressure Vessels Piping, 83(1), 1-12. https://doi.org/10.1016/j.ijpvp.2005.10.005.
  9. Do, Q.C., Pham, D.N., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., 31.
  10. Efraim, E. and Eisenberger, M. (2006), "Exact vibration frequencies of segmented axisymmetric shells", Thin-Walled Struct., 44(3), 281-289. https://doi.org/10.1016/j.tws.2006.03.006.
  11. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory" Aeros. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030.
  12. Heidari Soureshjani, A., Talebitooti, R. and Talebitooti, M. (2020), "A semi-analytical approach on the effect of external lateral pressure on free vibration of joined sandwich aerospace composite conical-conical shells", Aeros. Sci. Technol., 99, 105559. https://doi.org/10.1016/j.ast.2019.105559.
  13. Irie, T., Yamada, G. and Kaneko, Y. (1982), "Free vibration of a conical shell with variable thickness", J. Sound Vib., 82(1), 83-94. https://doi.org/10.1016/0022-460X(82)90544-2
  14. Irie, T., Yamada, G. and Muramoto, Y. (1984), "Free vibration of joined conical-cylindrical shells", J. Sound Vib., 95(1), 31-39. https://doi.org/10.1016/0022-460X(84)90256-6.
  15. Kamat, S., Ganapathi, M. and Patel, B. (2001), "Analysis of parametrically excited laminated composite joined conical-cylindrical shells", Comput. Struct., 79(1), 65-76. https://doi.org/10.1016/S0045-7949(00)00111-5.
  16. Kerboua, Y. and Lakis, A.A. (2016), "Numerical model to analyze the aerodynamic behavior of a combined conical-cylindrical shell", Aeros. Sci. Technol., 58, 601-617. https://doi.org/10.1016/j.ast.2016.09.019.
  17. Lair, J., Hui, D., Sofiyev, A.H., Gribniak, V. and Turan, F. (2019), "On the parametric instability of multilayered conical shells using the FOSDT", Steel Compos. Struct., 31(3), 277-290. https://doi.org/10.12989/scs.2019.31.3.277.
  18. Lam, K. and Hua, L. (2000), "Influence of initial pressure on frequency characteristics of a rotating truncated circular conical shell", Int. J. Mech. Sci., 42(2), 213-236. https://doi.org/10.1016/S0020-7403(98)00125-8.
  19. Lam, K., Li, H., Ng, T. and Chua, C. (2002), "Generalized differential quadrature method for the free vibration of truncated conical panels", J. Sound Vib., 251(2), 329-348. https://doi.org/10.1006/jsvi.2001.3993.
  20. Lee, Y.S., Yang, M.S., Kim, H.S. and Kim, J.H. (2002), "A study on the free vibration of the joined cylindrical-spherical shell structures", Comput. Struct., 80(27-30), 2405-2414. https://doi.org/10.1016/S0045-7949(02)00243-2.
  21. Li, H., Cong, G., Li, L., Pang, F. and Lang, J. (2019), "A semi analytical solution for free vibration analysis of combined spherical and cylindrical shells with non-uniform thickness based on Ritz method", Thin-Walled Struct., 145, 106443. https://doi.org/10.1016/j.tws.2019.106443.
  22. Liew, K.M., Ng, T.Y. and Zhao, X. (2005), "Free vibration analysis of conical shells via the element-free kp-Ritz method", J. Sound Vib., 281(3-5), 627-645. https://doi.org/10.1016/j.jsv.2004.01.005.
  23. Loy, C., Lam, K. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3), 193-198. https://doi.org/10.3233/SAV-1997-4305.
  24. Mehditabar, A., Alashti, R.A. and Pashaei, M. (2014), "Magnetothermo-elastic analysis of a functionally graded conical shell", Steel Compos. Struct., 16(1), 77-96. https://doi.org/10.12989/scs.2014.16.1.077.
  25. Penzes, L.E. and Kraus, H. (1972), "Free vibration of prestressed cylindrical shells having arbitrary homogeneous boundary conditions", AIAA, J., 10(10), 1309-1313. https://doi.org/10.2514/3.6605.
  26. Rahmani, M., Mohammadi, Y., Kakavand, F. and Raeisifard, H. (2020), "Vibration analysis of different types of porous FG conical sandwich shells in various thermal surroundings", J. Appl. Comput. Mech., 6(3), 416-432. https://dx.doi.org/10.22055/jacm.2019.29442.1598.
  27. Rezaiee-Pajand, M., Arabi, E. and. Masoodi, A.R. (2018), "A triangular shell element for geometrically nonlinear analysis", Acta Mech., 229(1), 323-342. https://doi.org/10.2514/3.6605.
  28. Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2019), "Nonlinear analysis of FG-sandwich plates and shells", Aeros. Sci. Technol., 87, 178-189. https://doi.org/10.1016/j.ast.2019.02.017.
  29. Rezaiee-Pajand, M. and Masoodi, A.R. (2019), "Shell instability analysis by using mixed interpolation", J. Brazil. Soc. Mech. Sci. Eng., 41(10), 1-18. https://doi.org/10.1007/s40430-019-1937-y.
  30. Rezaiee-Pajand, M. and Masoodi, A.R. (2020), "Hygro-thermoelastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2020.1780524.
  31. Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2020), "Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method", Aeros. Sci. Technol., 105, 105998. https://doi.org/10.1016/j.ast.2020.105998.
  32. Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2021), "Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells", Thin-Wall. Struct., 159, 107272. https://doi.org/10.1016/j.tws.2020.107272.
  33. Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeitaba, S.B. (2019), "Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM", Steel Compos. Struct., 33(2), 307-318. https://doi.org/10.12989/scs.2019.33.2.307.
  34. Saunders, H., Wisniewski, E. and Paslay, P.R. (1960), "Vibrations of conical shells", J. Acoust. Soc. Amer., 32(6), 765-772. https://doi.org/10.1121/1.1908207.
  35. Shu, C. (1996), "An efficient approach for free vibration analysis of conical shells", Int. J. Mech. Sci., 38(8), 935-949. https://doi.org/10.1016/0020-7403(95)00096-8.
  36. Shu, C. and Du, H. (1997), "A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates", Int. J. Solids Struct., 34(7), 837-846. https://doi.org/10.1016/S0020-7683(96)00056-X.
  37. Sobhani, E., Arbabian, A. Civalek, O.and Avcar, M. (2021), "The free vibration analysis of hybrid porous nanocomposite joined hemispherical-cylindrical-conical shells", Eng. Comput., 1-28. https://doi.org/10.1007/s00366-021-01453-0.
  38. Sobhani, E. and Masoodi, A.R. (2021), "Differential quadrature technique for frequencies of the coupled circular arch-arch beam bridge system", Mech. Adv. Mater. Struct., 1-12. https://doi.org/10.1080/15376494.2021.2023920.
  39. Sobhani, E. and Masoodi, A.R. (2021), "Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches", Aeros. Sci. Technol., 119, 107111. https://doi.org/10.1016/j.ast.2021.107111
  40. Sobhani, E. and Masoodi, A.R. (2022), "A comprehensive shell approach for vibration of porous nano-enriched polymer composite coupled spheroidal-cylindrical shells", Compos. Struct., 115464. https://doi.org/10.1016/j.compstruct.2022.115464.
  41. Sobhani, E. and Masoodi, A.R. (2022), "On the circumferential wave responses of connected elliptical-cylindrical shell-like submerged structures strengthened by nano-reinforcer", Ocean Eng., 247, 110718. https://doi.org/10.1016/j.oceaneng.2022.110718.
  42. Sobhani, E., Masoodi, A.R. and. Ahmadi-Pari, A.R (2021), "Vibration of FG-CNT and FG-GNP sandwich composite coupled Conical-Cylindrical-Conical shell," Compos. Struct., 273, 114281. https://doi.org/10.1016/j.compstruct.2021.114281.
  43. Sobhani, E., Masoodi, A.R., Civalek, O. and Ahmadi-Pari, A.R. (2022), "Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells", Aeros. Sci. Technol., 120, 107257. https://doi.org/10.1016/j.ast.2021.107257.
  44. Sobhani, E., Masoodi, A.R. Civalek, O. and Avcar, M. (2022), "Natural frequency analysis of FG-GOP/polymer nanocomposite spheroid and ellipsoid doubly curved shells reinforced by transversely-isotropic carbon fibers", Eng. Anal. Bound. Elements, 138, 369-389. https://doi.org/10.1016/j.enganabound.2022.03.009.
  45. Sobhani, E., Moradi-Dastjerdi, R., Behdinan, K., Masoodi, A.R. and Ahmadi-Pari, A.R. (2022), "Multifunctional trace of various reinforcements on vibrations of three-phase nanocomposite combined hemispherical-cylindrical shells", Compos. Struct., 279, 114798. https://doi.org/10.1016/j.compstruct.2021.114798.
  46. Sofiyev, A. and N. Kuruoglu (2015), "On a problem of the vibration of functionally graded conical shells with mixed boundary conditions", Compos. Part B: Eng., 70, 122-130. https://doi.org/10.1016/j.compositesb.2014.10.047.
  47. Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., 25(5), 581-591. https://doi.org/10.12989/scs.2017.25.5.581.
  48. Srinivasan, R. and Krishnan, P. (1987), "Free vibration of conical shell panels", J. Sound Vib., 117(1), 153-160. https://doi.org/10.1016/0022-460X(87)90441-X.
  49. Srivastava, V., Dwivedi, S. and Mukhopadhyay, A. (2022), "Parametric investigation of vibration of stiffened structural steel plates using finite element analysis and grey relational analysis", Reports Mech. Eng., 3(1), 108-115. https://doi.org/10.31181/rme2001290122s.
  50. Tang, Q., Li, C., She, H. and Wen, B. (2019), "Nonlinear response analysis of bolted joined cylindrical-cylindrical shell with general boundary condition", J. Sound Vib., 443, 788-803. https://doi.org/10.1016/j.jsv.2018.12.003.
  51. Ton-That, H.L. (2021), "A new C0 third-order shear deformation theory for the nonlinear free vibration analysis of stiffened functionally graded plates", Facta Universitatis, Series: Mechanical Engineering, 19(2), 285-305. https://doi.org/10.22190/FUME200629040T
  52. Topal, U. (2013), "Pareto optimum design of laminated composite truncated circular conical shells," Steel Compos. Struct., 14(4), 397-408. https://doi.org/10.12989/scs.2013.14.4.397.
  53. Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Meth. Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
  54. Tornabene, F. and Viola, E. (2009), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44(3), 255-281. https://doi.org/10.1007/s11012-008-9167-x.
  55. Viola, E. and Artioli, E. (2004), "The GDQ method for the harmonic dynamic analysis of rotational shell structural elements", Struct. Eng. Mech., 17(6), 789-818. https://doi.org/10.12989/scs.2013.14.4.397.
  56. Wu, S., Qu, Y. and Hua, H. (2013), "Free vibration of laminated orthotropic conical shell on Pasternak foundation by a domain decomposition method", J. Compos. Mater., 49(1), 35-52. https://doi.org/10.1177/0021998313514259.
  57. Xie, K., Chen, M. and Li, Z. (2017), "An analytic method for free and forced vibration analysis of stepped conical shells with arbitrary boundary conditions", Thin-Wall. Struct., 111, 126-137. https://doi.org/10.1016/j.tws.2016.11.017.
  58. Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.397.
  59. Zhao, X. and Liew, K.M. (2011), "Free vibration analysis of functionally graded conical shell panels by a meshless method", Compos. Struct., 93(2), 649-664. https://doi.org/10.1016/j.compstruct.2010.08.014.
  60. Zielnica, J. (2012), "Buckling and stability of elastic-plastic sandwich conical shells", Steel Compos. Struct., 13(2), 157-169. https://doi.org/10.12989/scs.2012.13.2.157.