• Title/Summary/Keyword: continuity conditions

Search Result 310, Processing Time 0.086 seconds

FROM STRONG CONTINUITY TO WEAK CONTINUITY

  • Kim, Jae-Woon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.29-40
    • /
    • 2001
  • In this note, we get the conditions such that strong continuity ${\Rightarrow}$ weak continuity plus interiority condition( wc+ic), and continuity ${\Rightarrow}$ wc+ic are true. And we investigate some equivalent conditions with weak continuity, some properties of weak continuity. And we show that almost compactness is preserved by weakly continuous function, and we improve some known results with respect to strong continuity.

  • PDF

FUZZY D-CONTINUOUS FUNCTIONS

  • Akdag, Metin
    • East Asian mathematical journal
    • /
    • v.17 no.1
    • /
    • pp.1-17
    • /
    • 2001
  • In this paper, fuzzy D-continuous function is defined. Some basic properties of this continuity are summarized; and sufficient conditions on domain and/or ranges implying fuzzy D-continuity of fuzzy D-continuous functions are given. Also fuzzy D-regular space is defined and by using fuzzy D-continuity, the condition which is equivalent to fuzzy D-regular space, is given.

  • PDF

WEAKLY WELL-DECOMPOSABLE OPERATORS AND AUTOMATIC CONTINUITY

  • Cho, Tae-Geun;Han, Hyuk
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.347-365
    • /
    • 1996
  • Let X and Y be Banach spaces and consider a linear operator $\theta : X \to Y$. The basic automatic continuity problem is to derive the continuity of $\theta$ from some prescribed algebraic conditions. For example, if $\theta : X \to Y$ is a linear operator intertwining with $T \in L(X)$ and $S \in L(Y)$, one may look for algebraic conditions on T and S which force $\theta$ to be continuous.

  • PDF

A discussion on simple third-order theories and elasticity approaches for flexure of laminated plates

  • Singh, Gajbir;Rao, G. Venkateswara;Iyengar, N.G.R.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.121-133
    • /
    • 1995
  • It is well known that two-dimensional simplified third-order theories satisfy the layer interface continuity of transverse shear strains, thus these theories violate the continuity of transverse shear stresses when two consecutive layers differ either in fibre orientation or material. The third-order theories considered herein involve four/or five dependent unknowns in the displacement field and satisfy the condition of vanishing of transverse shear stresses at the bounding planes of the plate. The objective of this investigation is to examine (i) the flexural response prediction accuracy of these third-order theories compared to exact elasticity solution (ii) the effect of layer interface continuity conditions on the flexural response. To investigate the effect of layer interface continuity conditions, three-dimensional elasticity solutions are developed by enforcing the continuity of different combinations of transverse stresses and/or strains at the layer interfaces. Three dimensional twenty node solid finite element (having three translational displacements as degrees of freedom) without the imposition of any of the conditions on the transverse stresses and strains is also employed for the flexural analysis of the laminated plates for the purposes of comparison with the above theories. These shear deformation theories and elasticity approaches in terms of accuracy, adequacy and applicability are examined through extensive numerical examples.

CONTINUITY OF (α,β)-DERIVATIO OF OPERATOR ALGEBRAS

  • Hou, Chengjun;Meng, Qing
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.823-835
    • /
    • 2011
  • We investigate the continuity of (${\alpha},{\beta}$)-derivations on B(X) or $C^*$-algebras. We give some sufficient conditions on which (${\alpha},{\beta}$)-derivations on B(X) are continuous and show that each (${\alpha},{\beta}$)-derivation from a unital $C^*$-algebra into its a Banach module is continuous when and ${\alpha}$ ${\beta}$ are continuous at zero. As an application, we also study the ultraweak continuity of (${\alpha},{\beta}$)-derivations on von Neumann algebras.