Acknowledgement
This study was not funded by any company.
References
- Aris, H. and H. Ahmadi (2020), "Nonlinear vibration analysis of FGM truncated conical shells subjected to harmonic excitation in thermal environment", Mech. Res. Commun., 104, 103499. https://doi.org/10.1016/j.mechrescom.2020.103499.
- Artioli, E. and E. Viola (2005), "Static analysis of sheardeformable shells of revolution via GDQ method", Struct. Eng. Mech., 19(4), 459-475. https://doi.org/10.12989/sem.2005.19.4.459.
- Bagheri, H., Kiani, Y. and Eslami, M. (2018), "Free vibration of joined conical-cylindrical-conical shells", Acta Mechanica, 229(7), 2751-2764. https://doi.org/10.1007/s00707-018-2133-3.
- Bagheri, H., Kiani, Y. and Eslami, M.R. (2017), "Free vibration of conical shells with intermediate ring support", Aeros. Sci. Technol., 69, 321-332, https://doi.org/10.1016/j.ast.2017.06.037.
- Bagheri, H., Kiani, Y. and Eslami, M.R. (2017), "Free vibration of joined conical-conical shells", Thin-Walled Struct., 120, 446-457, https://doi.org/10.1016/j.tws.2017.06.032.
- Caresta, M. and Kessissoglou, N.J. (2010), "Free vibrational characteristics of isotropic coupled cylindrical-conical shells", J. Sound Vib. 329(6), 733-751. https://doi.org/10.1016/j.jsv.2009.10.003.
- Chen, J.C. and Babcock, C.D. (1975), "Nonlinear vibration of cylindrical shells", AiAA J., 13(7), 868-876. https://doi.org/10.2514/3.60462.
- Civalek, O. (2006), "An efficient method for free vibration analysis of rotating truncated conical shells", Int. J. Pressure Vessels Piping, 83(1), 1-12. https://doi.org/10.1016/j.ijpvp.2005.10.005.
- Do, Q.C., Pham, D.N., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., 31.
- Efraim, E. and Eisenberger, M. (2006), "Exact vibration frequencies of segmented axisymmetric shells", Thin-Walled Struct., 44(3), 281-289. https://doi.org/10.1016/j.tws.2006.03.006.
- Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory" Aeros. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030.
- Heidari Soureshjani, A., Talebitooti, R. and Talebitooti, M. (2020), "A semi-analytical approach on the effect of external lateral pressure on free vibration of joined sandwich aerospace composite conical-conical shells", Aeros. Sci. Technol., 99, 105559. https://doi.org/10.1016/j.ast.2019.105559.
- Irie, T., Yamada, G. and Kaneko, Y. (1982), "Free vibration of a conical shell with variable thickness", J. Sound Vib., 82(1), 83-94. https://doi.org/10.1016/0022-460X(82)90544-2
- Irie, T., Yamada, G. and Muramoto, Y. (1984), "Free vibration of joined conical-cylindrical shells", J. Sound Vib., 95(1), 31-39. https://doi.org/10.1016/0022-460X(84)90256-6.
- Kamat, S., Ganapathi, M. and Patel, B. (2001), "Analysis of parametrically excited laminated composite joined conical-cylindrical shells", Comput. Struct., 79(1), 65-76. https://doi.org/10.1016/S0045-7949(00)00111-5.
- Kerboua, Y. and Lakis, A.A. (2016), "Numerical model to analyze the aerodynamic behavior of a combined conical-cylindrical shell", Aeros. Sci. Technol., 58, 601-617. https://doi.org/10.1016/j.ast.2016.09.019.
- Lair, J., Hui, D., Sofiyev, A.H., Gribniak, V. and Turan, F. (2019), "On the parametric instability of multilayered conical shells using the FOSDT", Steel Compos. Struct., 31(3), 277-290. https://doi.org/10.12989/scs.2019.31.3.277.
- Lam, K. and Hua, L. (2000), "Influence of initial pressure on frequency characteristics of a rotating truncated circular conical shell", Int. J. Mech. Sci., 42(2), 213-236. https://doi.org/10.1016/S0020-7403(98)00125-8.
- Lam, K., Li, H., Ng, T. and Chua, C. (2002), "Generalized differential quadrature method for the free vibration of truncated conical panels", J. Sound Vib., 251(2), 329-348. https://doi.org/10.1006/jsvi.2001.3993.
- Lee, Y.S., Yang, M.S., Kim, H.S. and Kim, J.H. (2002), "A study on the free vibration of the joined cylindrical-spherical shell structures", Comput. Struct., 80(27-30), 2405-2414. https://doi.org/10.1016/S0045-7949(02)00243-2.
- Li, H., Cong, G., Li, L., Pang, F. and Lang, J. (2019), "A semi analytical solution for free vibration analysis of combined spherical and cylindrical shells with non-uniform thickness based on Ritz method", Thin-Walled Struct., 145, 106443. https://doi.org/10.1016/j.tws.2019.106443.
- Liew, K.M., Ng, T.Y. and Zhao, X. (2005), "Free vibration analysis of conical shells via the element-free kp-Ritz method", J. Sound Vib., 281(3-5), 627-645. https://doi.org/10.1016/j.jsv.2004.01.005.
- Loy, C., Lam, K. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3), 193-198. https://doi.org/10.3233/SAV-1997-4305.
- Mehditabar, A., Alashti, R.A. and Pashaei, M. (2014), "Magnetothermo-elastic analysis of a functionally graded conical shell", Steel Compos. Struct., 16(1), 77-96. https://doi.org/10.12989/scs.2014.16.1.077.
- Penzes, L.E. and Kraus, H. (1972), "Free vibration of prestressed cylindrical shells having arbitrary homogeneous boundary conditions", AIAA, J., 10(10), 1309-1313. https://doi.org/10.2514/3.6605.
- Rahmani, M., Mohammadi, Y., Kakavand, F. and Raeisifard, H. (2020), "Vibration analysis of different types of porous FG conical sandwich shells in various thermal surroundings", J. Appl. Comput. Mech., 6(3), 416-432. https://dx.doi.org/10.22055/jacm.2019.29442.1598.
- Rezaiee-Pajand, M., Arabi, E. and. Masoodi, A.R. (2018), "A triangular shell element for geometrically nonlinear analysis", Acta Mech., 229(1), 323-342. https://doi.org/10.2514/3.6605.
- Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2019), "Nonlinear analysis of FG-sandwich plates and shells", Aeros. Sci. Technol., 87, 178-189. https://doi.org/10.1016/j.ast.2019.02.017.
- Rezaiee-Pajand, M. and Masoodi, A.R. (2019), "Shell instability analysis by using mixed interpolation", J. Brazil. Soc. Mech. Sci. Eng., 41(10), 1-18. https://doi.org/10.1007/s40430-019-1937-y.
- Rezaiee-Pajand, M. and Masoodi, A.R. (2020), "Hygro-thermoelastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2020.1780524.
- Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2020), "Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method", Aeros. Sci. Technol., 105, 105998. https://doi.org/10.1016/j.ast.2020.105998.
- Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2021), "Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells", Thin-Wall. Struct., 159, 107272. https://doi.org/10.1016/j.tws.2020.107272.
- Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeitaba, S.B. (2019), "Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM", Steel Compos. Struct., 33(2), 307-318. https://doi.org/10.12989/scs.2019.33.2.307.
- Saunders, H., Wisniewski, E. and Paslay, P.R. (1960), "Vibrations of conical shells", J. Acoust. Soc. Amer., 32(6), 765-772. https://doi.org/10.1121/1.1908207.
- Shu, C. (1996), "An efficient approach for free vibration analysis of conical shells", Int. J. Mech. Sci., 38(8), 935-949. https://doi.org/10.1016/0020-7403(95)00096-8.
- Shu, C. and Du, H. (1997), "A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates", Int. J. Solids Struct., 34(7), 837-846. https://doi.org/10.1016/S0020-7683(96)00056-X.
- Sobhani, E., Arbabian, A. Civalek, O.and Avcar, M. (2021), "The free vibration analysis of hybrid porous nanocomposite joined hemispherical-cylindrical-conical shells", Eng. Comput., 1-28. https://doi.org/10.1007/s00366-021-01453-0.
- Sobhani, E. and Masoodi, A.R. (2021), "Differential quadrature technique for frequencies of the coupled circular arch-arch beam bridge system", Mech. Adv. Mater. Struct., 1-12. https://doi.org/10.1080/15376494.2021.2023920.
- Sobhani, E. and Masoodi, A.R. (2021), "Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal and hyperboloidal shells based on multiscale approaches", Aeros. Sci. Technol., 119, 107111. https://doi.org/10.1016/j.ast.2021.107111
- Sobhani, E. and Masoodi, A.R. (2022), "A comprehensive shell approach for vibration of porous nano-enriched polymer composite coupled spheroidal-cylindrical shells", Compos. Struct., 115464. https://doi.org/10.1016/j.compstruct.2022.115464.
- Sobhani, E. and Masoodi, A.R. (2022), "On the circumferential wave responses of connected elliptical-cylindrical shell-like submerged structures strengthened by nano-reinforcer", Ocean Eng., 247, 110718. https://doi.org/10.1016/j.oceaneng.2022.110718.
- Sobhani, E., Masoodi, A.R. and. Ahmadi-Pari, A.R (2021), "Vibration of FG-CNT and FG-GNP sandwich composite coupled Conical-Cylindrical-Conical shell," Compos. Struct., 273, 114281. https://doi.org/10.1016/j.compstruct.2021.114281.
- Sobhani, E., Masoodi, A.R., Civalek, O. and Ahmadi-Pari, A.R. (2022), "Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells", Aeros. Sci. Technol., 120, 107257. https://doi.org/10.1016/j.ast.2021.107257.
- Sobhani, E., Masoodi, A.R. Civalek, O. and Avcar, M. (2022), "Natural frequency analysis of FG-GOP/polymer nanocomposite spheroid and ellipsoid doubly curved shells reinforced by transversely-isotropic carbon fibers", Eng. Anal. Bound. Elements, 138, 369-389. https://doi.org/10.1016/j.enganabound.2022.03.009.
- Sobhani, E., Moradi-Dastjerdi, R., Behdinan, K., Masoodi, A.R. and Ahmadi-Pari, A.R. (2022), "Multifunctional trace of various reinforcements on vibrations of three-phase nanocomposite combined hemispherical-cylindrical shells", Compos. Struct., 279, 114798. https://doi.org/10.1016/j.compstruct.2021.114798.
- Sofiyev, A. and N. Kuruoglu (2015), "On a problem of the vibration of functionally graded conical shells with mixed boundary conditions", Compos. Part B: Eng., 70, 122-130. https://doi.org/10.1016/j.compositesb.2014.10.047.
- Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., 25(5), 581-591. https://doi.org/10.12989/scs.2017.25.5.581.
- Srinivasan, R. and Krishnan, P. (1987), "Free vibration of conical shell panels", J. Sound Vib., 117(1), 153-160. https://doi.org/10.1016/0022-460X(87)90441-X.
- Srivastava, V., Dwivedi, S. and Mukhopadhyay, A. (2022), "Parametric investigation of vibration of stiffened structural steel plates using finite element analysis and grey relational analysis", Reports Mech. Eng., 3(1), 108-115. https://doi.org/10.31181/rme2001290122s.
- Tang, Q., Li, C., She, H. and Wen, B. (2019), "Nonlinear response analysis of bolted joined cylindrical-cylindrical shell with general boundary condition", J. Sound Vib., 443, 788-803. https://doi.org/10.1016/j.jsv.2018.12.003.
- Ton-That, H.L. (2021), "A new C0 third-order shear deformation theory for the nonlinear free vibration analysis of stiffened functionally graded plates", Facta Universitatis, Series: Mechanical Engineering, 19(2), 285-305. https://doi.org/10.22190/FUME200629040T
- Topal, U. (2013), "Pareto optimum design of laminated composite truncated circular conical shells," Steel Compos. Struct., 14(4), 397-408. https://doi.org/10.12989/scs.2013.14.4.397.
- Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Meth. Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
- Tornabene, F. and Viola, E. (2009), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44(3), 255-281. https://doi.org/10.1007/s11012-008-9167-x.
- Viola, E. and Artioli, E. (2004), "The GDQ method for the harmonic dynamic analysis of rotational shell structural elements", Struct. Eng. Mech., 17(6), 789-818. https://doi.org/10.12989/scs.2013.14.4.397.
- Wu, S., Qu, Y. and Hua, H. (2013), "Free vibration of laminated orthotropic conical shell on Pasternak foundation by a domain decomposition method", J. Compos. Mater., 49(1), 35-52. https://doi.org/10.1177/0021998313514259.
- Xie, K., Chen, M. and Li, Z. (2017), "An analytic method for free and forced vibration analysis of stepped conical shells with arbitrary boundary conditions", Thin-Wall. Struct., 111, 126-137. https://doi.org/10.1016/j.tws.2016.11.017.
- Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.397.
- Zhao, X. and Liew, K.M. (2011), "Free vibration analysis of functionally graded conical shell panels by a meshless method", Compos. Struct., 93(2), 649-664. https://doi.org/10.1016/j.compstruct.2010.08.014.
- Zielnica, J. (2012), "Buckling and stability of elastic-plastic sandwich conical shells", Steel Compos. Struct., 13(2), 157-169. https://doi.org/10.12989/scs.2012.13.2.157.