DOI QR코드

DOI QR Code

Antioxidant and anti-inflammatory effects of silymarin

실리마린의 항산화 및 항염증 효과

  • Park, Hyun-Bin (Department of Biomedical Science, Cheongju University) ;
  • Kyeong, Inn-Goo (Department of Biomedical Science, Cheongju University) ;
  • Kang, Jung-Hoon (Department of Biomedical Science, Cheongju University)
  • Received : 2022.08.04
  • Accepted : 2022.09.13
  • Published : 2022.09.30

Abstract

We investigated the antioxidant and anti-inflammatory effects of silymarin. The antioxidant activity was evaluated using 1,1-diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals scavenging assays. Silymarin scavenged 71% of DPPH radicals and 78% of ABTS radicals at a concentration of 1 mg/mL, respectively. Silymarin effectively inhibited the oxidative damage of DNA, and the oxidative modifications of human serum proteins and Cu,Zn-SOD. Also silymarin effectively inhibited H2O2- and LPS-induced cell death as well as the generation of reactive oxygen species and DNA fragmentation by H2O2 and LPS. The results suggested that silymarin might be an effective natural antioxidant and anti-inflammatory material.

본 연구는 실리마린의 항산화 및 항염증 활성을 알아보고자 하였다. 항산화 활성은 2,2-diphenyl-1-picrylhydrazyl (DPPH)와 2,2'-azino-bis (3-ethylbenzothiazoline5 6-sulfonic acid) (ABTS) 라디칼에 대한 소거능을 측정하여 확인하였다. 실리마린은 1 mg/mL의 농도에서 DPPH 라디칼을 71%, ABTS 라디칼을 78% 소거하여 우수한 항산화 효과를 나타냈다. 실리마린은 DNA의 산화적 손상을 효과적으로 억제하였고 사람 혈청 단백질과 Cu,Zn-SOD의 산화적 변형을 억제하였다. 또한 실리마린은 H2O2와 LPS에 의한 세포사멸, ROS 생성 및 DNA fragmentation을 억제하였다. 본 연구 결과들을 통해 실리마린은 효과적인 천연 항산화 및 항염증 소재로 적용될 수 있음을 제시하였다.

Keywords

Acknowledgement

이 논문은 2011년도 청주대학교 연구장학 지원과 2020년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 지원에 의한 것임.

References

  1. Halliwell B (1991) Reactive oxygen species in living systems: Source, biochemistry, and role in human disease, Am J Med 91: S14-S22. doi:10.1016/0002-9343(91)90279-7
  2. McCord JM (1983) The superoxide free radical: its biochemistry and pathophysiology. Surgery 94: 412-414
  3. Song HR, Woo YS, Park WM (2013) Depression as an inflammatory disease. J Korean Psychiatric Assoc 24: 5-10
  4. Lee CY, Jung DU, Kim SJ, Kang JW, Moon JJ, Jeon DW, Kim YN, Shin J, Nam SH (2019) Association of Depression with Atypical Features and Metabolic Syndrome in Korean Adults. Korean J Psychosom Med 27: 90-100. doi: 10.1111/pcn.12104
  5. Jung MJ, Yin Y, Heo SI, Wang MH (2008) Antioxidant and anticancer activities of extract from Artemisia capillaries. Korean J Pharmacogn 39: 194-198
  6. Abenavoli L, Capasso R, Milic N, Capasso F (2010) Milk thistle in liver diseases: past, present, future. Phytother Res 24: 1423-1432. doi:10.1002/ptr.3207
  7. Rambaldi A, Jacobs BP, Gluud C (2007) Milk thistle for alcoholic and/or hepatitis B or C virus liver diseases. Cochrane Database Syst 3: 1465-1858 doi: 10.1002/14651858.CD003620.pub3
  8. Sahib AS, Al-Anbari HH, Salih M, Abdullah FF (2012) Effects of Oral Antioxidants on Lesion Counts Associated with Oxidative Stress and Inflammation in Patients with Papulopustular Acne. J Clin Exp Dermatol Res 3: 1-6. doi: 10.4172/2155-9554.1000163
  9. Amiri M, Motamedi P, Vakili L, Dehghani N, Kiani F, Taheri Z, Torkamaneh S, Nasri P, Nasri H (2014) Beyond the liver protective efficacy of silymarin; bright renoprotective effect on diabetic kidney disease. J Nephropharmacol 3: 25-26
  10. Gupta OP, Sing S, Bani S, Sharma N, Malhotra S, Gupta BD, Banerjee SK, Handa SS (2000) Anti-inflammatory and anti-arthritic activities of silymarin acting through inhibition of 5-lipoxygenase. Phytomedicine 7: 21-24. doi: 10.1016/S0944-7113(00)80017-3
  11. Avizeh R, Najafzadeh H, Razijalali M, Shirali S (2010). Evaluation of prophylactic and therapeutic effects of silymarin and N-acetylcysteine in acetaminophen-induced hepatotoxicity in cats. J Vet Pharmacol Ther 33: 95-99. doi: 10.1111/j.1365-2885.2009.01100.x
  12. Jelodar G, Rafiee B, Moosavi SH (2015) Silymarine extract improved plasma homocysteine, lipids and liver enzymes in hyperhomocysteinemic Non-alcoholic Steatohepatitis. Physiol Pharmacol 19: 139-145
  13. W Brand-Williams, ME Cuvelier, C Berset (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25-30. doi: 10.1016/S0023-6438(95)80008-5
  14. Kang JH, Kim SM (1997) DNA cleavage by hydroxyl radicals generated in the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Mol Cells 7: 777-782
  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 doi: 10.1038/227680a0
  16. Kim MJ, Kim DW, Park JH, Kim SJ, Lee CH, Yong JI, Ryu EJ, Cho SB, Yeo HJ, Hyeon J, Cho SW, Kim DS, Son O, Park J, Han KH, Cho YS, Eum WS, Choi SY (2013) PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages. Free Radic Biol Med 63: 432-445. doi: 10.1016/j.freeradbiomed.2013.06.005
  17. Heo SI, Jung MJ, Kim MK, Wang MH (2007) Antioxidative Activities and Tyrosinase Inhibitory Effects of Korean Medicinal Plants. J Appl Biol Chem 50: 115-119.
  18. Hinneburg I, Kempe S, Ruttinger HH, Neubert RH (2006) Antioxidant and photoprotective properties of an extract from buckwheat herb (Fagopyrum esculentum MOENCH). Die Pharmazie 61: 237-240
  19. Selvaraj KS, Chowdhury R, Bhattacharjee C (2013) Isolation and structural elucidation of flavonoids from aquatic fern azolla microphylla and evaluation of free radical scavenging activity., Int J Pharm Pharm Sci 5: 743-749
  20. Ames BN (1983) Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221: 1256-1264. doi: 10.1126/science.6351251
  21. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247. doi: 10.1038/35041687
  22. Okada F, Shionoya H, Kobayashi M, Kobayashi T, Tazawa H, Onuma K, Iuchi Y, Matsubara N, Ijichi T, Dugas B, Hosokawa M (2006) Prevention of inflammation-mediated acquisition of metastatic properties of benign mouse fibrosarcoma cells by administration of an orally available superoxide dismutase. Br J Cancer 94: 854-862 https://doi.org/10.1038/sj.bjc.6603016
  23. Amstad P, Moret R, Cerutti P (1994) Glutathione peroxidase compensates for the hypersensitivity of Cu,Zn-superoxide dismutase overproducers to oxidant stress. J Biol Chem 269: 1606-1609. doi:10.1016/S0021-9258(17)42068-0
  24. Elroy-Stein O, Groner Y (1988) Impaired neurotransmitter uptake in PC12 cells overexpressing human Cu/Zn-superoxide dismutase-- implication for gene dosage effects in Down syndrome. Cell 52: 259-267. doi: 10.1016/0092-8674(88)90515-6
  25. Boesch-Saadatmandi C, Pospissil RT, Graeser AC, Canali R, Boomgaarden I, Doering F, Wolffram S, Egert S, Mueller MJ, Rimbach G (2009) Effect of quercetin on paraoxonase 2 levels in RAW264.7 macrophages and in human monocytes-role of quercetin metabolism. Int J Mol Sci 10: 4168-4177. doi: 10.3390/ijms10094168
  26. Momtazi AA, Askari-Khorasgani O, Abdollahi E, Sadeghi-Aliabadi H, Mortazaeinezhad F, Sahebkar A (2017) Phytochemical Analysis and Cytotoxicity Evaluation of Kelussia odoratissima Mozaff. J Acupunct Meridian stud 10: 180-186. doi: 10.1016/j.jams.2017.02.002
  27. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13: 757-772. doi: 10.2147/CIA.S158513
  28. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20: 1126-1167. doi: 10.1089/ars.2012.5149
  29. Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 25612-25618. doi: 10.1006/excr.2000.483