DOI QR코드

DOI QR Code

P2E(Play-to-Earn) 게임 지속이용의도에 대한 연구

Why do People Play P2E (Play-to-Earn) Games?: Focusing on Outcome Expectation and Social Influence

  • 장문경 (가천대학교 경영대학 경영학부)
  • 투고 : 2022.08.05
  • 심사 : 2022.08.31
  • 발행 : 2022.09.30

초록

최근 탈중앙화 애플리케이션(dApp: decentralized application)의 하나인 P2E(Play-to-earn) 게임이 많은 사회적 관심을 받고 있다. P2E게임은 블록체인 기술을 기반으로 하여 미래성장가능성이 높은 분야로 긍정적인 평가받는 동시에, P2E게임 아이템을 가상화폐 형태로 현금화할 수 있다는 점 때문에 사행성을 가지고 있다는 부정적인 평가도 받고 있다. 이런 상황에서 본 연구는 사용자들이 P2E게임을 지속적으로 사용하고자 하는 의도에 영향을 미치는 요인에 대해 살펴보고자 한다. 헤도닉 정보시스템 사용의도에 관한 선행연구를 바탕으로, 본 연구는 선행요인을 인지된 재미, 경제적 인센티브, 그리고 사회적 영향으로 제시하고, 사회적 영향에 주는 요인을 동료 및 외부 영향으로 나누어 살펴보았다. 연구모델을 P2E게임을 플레이한 경험이 있거나 인지하고 있는 우리나라 성인 350명을 대상으로 데이터를 수집하여 구조방정식 모형으로 검증하였다. 분석결과, 인지된 재미와 주관적 규범은 P2E게임을 지속적으로 사용하고자 하는 의도에 긍정적 영향을 유의미하게 주는 것으로 나타났으나, 경제적 인센티브는 유의미하게 나타나지 않았다. 그리고 동료 영향과 외부 영향은 주관적 규범에 유의미한 긍정적 영향을 주는 것으로 분석되었다. 본 연구는 게임업계, 정부, 게임사용자 등 여러 이해 당사자들의 P2E게임에 대한 평가가 첨예한 상황에서 발전적인 사회적 논의를 위한 근거 자료로 활용될 수 있을 것이다.

With the development of blockchain technology, play-to-earn (P2E) games, one of the decentralized applications (dApps), are receiving great social attention. P2E games are positively evaluated as areas with high growth potential based on blockchain technology, and at the same time, they are negatively evaluated as speculative as people can cash P2E game items in the form of cryptocurrency. In this situation, the purpose of this study is to investigate factors affecting the intention to use P2E games. Along with the discussion of hedonic system adoption, we consider the factors with perceived enjoyment, economic incentive, and social influence. In order to verify our research model, data were collected from 350 adults with P2E game experience or recognition, and a structural equation model was carried out. The analysis results find that perceived enjoyment and subjective norm have a significant positive effect on the intention to use P2E games, and economic incentive does not have a significant effect. In addition, peer influence and external influence have a significant positive effect on subjective norm. Drawing on these findings, we present several academic and practical implications for future research.

키워드

과제정보

본 연구는 2019년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구이며(NRF-2019S1A3A2099973), 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터지원사업의 연구결과로 수행되었음(IITP-2020-0-01749).

참고문헌

  1. 백영석, 이호, 이동현 (2015). 모바일 캐주얼 게임 몰입이 만족도 및 충성도에 미치는 영향. 지식경영연구, 16(4), 17-34. https://doi.org/10.15813/kmr.2015.16.4.002
  2. 안재영, 심소연, 윤혜정 (2022). 토픽 모델링 기법을 활용한 메타버스 증강현실 연구 동향 분석. 지식경영연구, 23(2), 123-142. https://doi.org/10.15813/KMR.2022.23.2.007
  3. 장영일, 정유수 (2018). 기술수용모형 (TAM) 을 통한 암호화 화폐 투자요인 분석. e-비즈니스연구, 19(2), 139-158.
  4. 정윤경, 하예영, 이혜인, 양희동 (2020). 공유경제 체제로서 컨소시엄 블록체인을 활용한 와인투자 주식플랫폼 프레임워크. 지식경영연구, 21(3), 45-65. https://doi.org/10.15813/KMR.2020.21.3.003
  5. 정해상 (2020). 블록체인 게임 (Dapp Game) 아이템 거래와 사행성의 관계. 서강법률논총, 9(3), 113-141.
  6. Afthanorhan, A., Ghazali, P. L., & Rashid, N. (2021). Discriminant validity: A comparison of CBSEM and consistent PLS using Fornell & Larcker and HTMT approaches. Journal of Physics: Conference Series, 1874(1), 012085. https://doi.org/10.1088/1742-6596/1874/1/012085
  7. Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24(4), 665-694. https://doi.org/10.2307/3250951
  8. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
  9. Akkus, H. T., Gursoy, S., Dogan, M., & Demir, A. B. (2022). Metaverse and metaverse cryptocurrencies (Meta Coins): Bubbles or future? Journal of Economics Finance and Accounting, 9(1), 22-29.
  10. Alzahrani, A. I., Mahmud, I., Ramayah, T., Alfarraj, O., & Alalwan, N. (2017). Extending the theory of planned behavior (TPB) to explain online game playing among Malaysian undergraduate students. Telematics and Informatics, 34(4), 239-251. https://doi.org/10.1016/j.tele.2016.07.001
  11. Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares(PLS) approach to causal modelling: Personal computer adoption and use as an illustration. Technology Studies, Special Issue on Research Methodology, 2(2), 285-309.
  12. Chang, C. C., & Chin, Y. C. (2011). Predicting the usage intention of social network games: An intrinsic-extrinsic motivation theory perspective. International Journal of Online Marketing (IJOM), 1(3), 29-37. https://doi.org/10.4018/ijom.2011070103
  13. Chang, I. C., Liu, C. C., & Chen, K. (2014). The effects of hedonic/utilitarian expectations and social influence on continuance intention to play online games. Internet Research, 24(1), 21-45. https://doi.org/10.1108/IntR-02-2012-0025
  14. Chen, A., Lu, Y., & Wang, B. (2016). Enhancing perceived enjoyment in social games through social and gaming factors. Information Technology & People, 29(1), 99-119. https://doi.org/10.1108/ITP-07-2014-0156
  15. Chin, W. (1998). Issues and opinion on structural equation modeling. MIS Quarterly, 22(1), 7-16.
  16. Choi, J., & Choi, J. W. (2022). Integrating the mobile game item and customer loyalty mileage in NFT. International Journal of Current Science Research and Review, 5(02), 7-16.
  17. Csikszentmihalyi, M. (1975). Beyond boredom and anxiety: The experience of play in work and games. San Francisco: Jossey-Bass.
  18. Davis, R., Lang, B., & Gautam, N. (2013). Modeling utilitarian-hedonic dual mediation (UHDM) in the purchase and use of games. Internet Research, 23(2), 229-256. https://doi.org/10.1108/10662241311313330
  19. De Jesus, S. B., Austria, D., Marcelo, D. R., Ocampo, C., Tibudan, A. J., & Tus, J. (2022). Play-to-earn: A qualitative analysis of the experiences and challenges faced by Axie Infinity Online Gamers Amidst the COVID-19 Pandemic. International Journal of Psychology and Counseling, 12(1), 391-424.
  20. Fishbein, M., & Ajzen, L. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
  21. Gefen, D., & Straub, D. W. (2005). A practical guide to factorial validity using PLS-graph: Tutorial and annotated example. Communications of the Association for Information Systems, 16(5), 91-109.
  22. Hansen, S. S., & Lee, J. K. (2013). What drives consumers to pass along marketer-generated eWOM in social network games? Social and game factors in play. Journal of Theoretical and Applied Electronic Commerce Research, 8(1), 53-68.
  23. Hsu, C. L., & Lu, H. P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41(7), 853-868. https://doi.org/10.1016/j.im.2003.08.014
  24. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
  25. Hung, S. Y., Ku, C. Y., & Chang, C. M. (2003). Critical factors of WAP services adoption: An empirical study. Electronic Commerce Research and Applications, 2(1), 42-60. https://doi.org/10.1016/S1567-4223(03)00008-5
  26. Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223. https://doi.org/10.1287/isre.13.2.205.83
  27. Kshetri, N. (2022). Policy, ethical, social, and environmental considerations of Web3 and the Metaverse. IT Professional, 24(3), 4-8.
  28. Lee, M. C. (2009). Understanding the behavioural intention to play online games: An extension of the theory of planned behaviour. Online Information Review, 33(5), 849-872. https://doi.org/10.1108/14684520911001873
  29. Lee, M. C., & Tsai, T. R. (2010). What drives people to continue to play online games? An extension of technology model and theory of planned behavior. Intl. Journal of Human-Computer Interaction, 26(6), 601-620. https://doi.org/10.1080/10447311003781318
  30. Li, H., Liu, Y., Xu, X., HeikkilH, J., & Van der Heijden, H. (2015). Modeling hedonic is continuance through the uses and gratifications theory: An empirical study in online games. Computers in Human Behavior, 48, 261-272. https://doi.org/10.1016/j.chb.2015.01.053
  31. Lin, C. P., & Bhattacherjee, A. (2010). Extending technology usage models to interactive hedonic technologies: A theoretical model and empirical test. Information Systems Journal, 20(2), 163-181. https://doi.org/10.1111/j.1365-2575.2007.00265.x
  32. Lin, T. C., & Huang, C. C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information & Management, 45(6), 410-417. https://doi.org/10.1016/j.im.2008.06.004
  33. Min, T., Wang, H., Guo, Y., Cai, W. (2019). Blockchain games: A survey. In Proceedings of 2019 IEEE Conference on Games (CoG), London, United Kingdom.
  34. Ringle, C. M., Wende, S., & Will, A. (2005). Smart PLS 2.0 M3. Hamburg: University of Hamburg.
  35. Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176. https://doi.org/10.1287/isre.6.2.144
  36. Valls Martinez, M. C., & Martin Cervantes, P. A. (2021). Partial least squares structural equation modeling (PLS-SEM) applications in economics and finance. Basel: Switzerland, MDPI AG.
  37. Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 28(4), 695-704. https://doi.org/10.2307/25148660
  38. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  39. Wang, Z., & Scheepers, H. (2012). Understanding the intrinsic motivations of user acceptance of hedonic information systems: Towards a unified research model. Communications of the Association for Information Systems, 30(1), 255-274.
  40. Wu, J., & Liu, D. (2007). The effects of trust and enjoyment on intention to play online games. Journal of Electronic Commerce Research, 8(2), 128-140.
  41. Yang, H. L., & Lin, R. X. (2019). Why do people continue to play mobile game apps? A perspective of individual motivation, social factor and gaming factor. Journal of Internet Technology, 20(6), 1925-1936.
  42. Yoon, G., Duff, B. R., & Ryu, S. (2013). Gamers just want to have fun? Toward an understanding of the online game acceptance. Journal of Applied Social Psychology, 43(9), 1814-1826. https://doi.org/10.1111/jasp.12133
  43. Yu, N., & Huang, Y. T. (2022). Why do people play games on mobile commerce platforms? An empirical study on the influence of gamification on purchase intention. Computers in Human Behavior, 126, 106991. https://doi.org/10.1016/j.chb.2021.106991
  44. Zhou, Z., Fang, Y., Vogel, D. R., Jin, X. L., & Zhang, X. (2012). Attracted to or locked in? Predicting continuance intention in social virtual world services. Journal of Management Information Systems, 29(1), 273-306. https://doi.org/10.2753/MIS0742-1222290108
  45. BBC. (2017). http://www.bbc.com/news/technology-42237162
  46. Blockworks. (2022). https://blockworks.co/axie-infinity-active-users-nft-prices-continue-to-decline-after-bridge-reopening/#:~:text=About%368%2C000%gamers%logged%onto,Infinity%co%2Dfounder%Jeff%Zirlin
  47. CoinGecko. (2022). https://www.coingecko.com/en/coins/axie-infinity
  48. Dappradar. (2021). https://dappradar.com/blog/dapp-industry-overview-november-2021
  49. Dappradar. (2022). https://dappradar.com/blog/dappradar-x-bga-games-report-q1-2022
  50. Inven. (2022). https://www.inven.co.kr/webzine/news/?news=267136
  51. Investopedia. (2019). https://www.investopedia.com/news/cryptokitties-are-still-thing-heres-why
  52. NFTically. (2021). https://www.nftically.com/blog/cryptokitties-a-pioneer-in-ethereum-gaming-and-nfts
  53. Restofworld. (2021). https://restofworld.org/2021/axie-infinity
  54. TechTarget. (2022). https://www.techtarget.com/searchsecurity/news/252518378/Axie-Infinity-hack-highlights-DPRK-cryptocurrency-heists#:~:text=The%breach%occurred%when%attackers,million%as%of%this%writing)