참고문헌
- Abbas, A.S. and Asheghi, R. (2018), "Optimized developed artificial neural network-based models to predict the blast-induced ground vibration", Innov. Infrastr. Solut., 3, 1-10. https://doi.org/10.1007/s41062-018-0137-4,
- Alkroosh, I., Alzabeebee, S. and Al-Taie, A.J. (2020), "Evaluation of the accuracy of commonly used empirical correlations in predicting the compression index of Iraqi fine-grained soils", Innov. Infrastr. Solut., 5, 68. https://doi.org/10.1007/s41062-020-00321-y.
- Alzabeebee, S. (2019), "Seismic response and design of buried concrete pipes subjected to soil loads", Tunn. Undergr. Sp. Technol., 93, 103084. https://doi.org/10.1016/j.tust.2019.103084.
- Alzabeebee, S. (2020), "Dynamic response and design of a skirted strip foundation subjected to vertical vibration", Geomech. Eng., 20(4), 345-358. https://doi.org/10.12989/gae.2020.20.4.345.
- Alzabeebee, S. (2022a), "Application of EPR-MOGA in computing the liquefaction-induced settlement of a building subjected to seismic shake", Eng. Comput., 38, 437-448. https://doi.org/10.1007/s00366-020-01159-9.
- Alzabeebee, S. (2022b), "Explicit soft computing model to predict the undrained bearing capacity of footing resting on aggregate pier reinforced cohesive ground", Innov. Infrastr. Solut., 7, 105. https://doi.org/10.1007/s41062-021-00706-7.
- Alzabeebee, S. and Chapman, D.N. (2020), "Evolutionary computing to determine the skin friction capacity of piles embedded in clay and evaluation of the available analytical methods", Transp. Geotechnol., 24, 100372. https://doi.org/10.1016/j.trgeo.2020.100372.
- Alzabeebee, S., Mohammed, D.A. and Alshkane, Y.M. (2022b), "Experimental study and soft computing modeling of the unconfined compressive strength of limestone rocks considering dry and saturation conditions", Rock Mech. Rock Eng., 55, 5535-5554. https://doi.org/10.1007/s00603-022-02948-y.
- Alzabeebee, S., Zuhaira, A.A. and Al-Hamd, R.K.S. (2022a), "Development of an optimized model to compute the undrained shaft friction adhesion factor of bored piles", Geomech. Eng., 28(4), 397-404. https://doi.org/10.12989/gae.2022.28.4.397.
- Ambraseys, N.R. and Hendron, A.J. (1968), Dynamic Behaviour of Rock Masses Rock Mechanics in Engineering Practices, Wiley, London.
- Armaghani, D.J., Mamou, A., Maraveas, C., Roussis, P.C., Siorikis, V.G., Skentou, A.D. and Asteris, P.G. (2021), "Predicting the unconfined compressive strength of granite using only two non-destructive test indexes", Geomech. Eng., 25(4), 317-330. https://doi.org/10.12989/gae.2021.25.4.317.
- Armaghani, J., Kumar, D., Samui, D., Hasanipanah, M. and Roy, B. (2020), "A novel approach for forecasting of ground vibrations resulting from blasting: modified particle swarm optimization coupled extreme learning machine", Eng. Comput., 37(4), 3221-3235. https://doi.org/10.1007/s00366-020-00997-x.
- Arthur, C.K., Temeng, V.A. and Ziggah, Y.Y. (2020), "Multivariate Adaptive Regression Splines (MARS) approach to blast-induced ground vibration prediction", Int. J. Min. Reclam. Environ., 34(3), 198-222. https://doi.org/10.1080/17480930.2019.1577940.
- Aytek, A. and Kisi, O. (2008), "A genetic programming approach to suspended sediment modelling", J. Hydro., 351(3), 288-298. https://doi.org/10.1016/j.jhydrol.2007.12.005.
- Bai, X.D., Cheng, W.C., Ong, D.E. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
- Bui, X., Choi, Y., Atrushkevich, V., Nguyen, H., Tran, Q.H., Long, N.Q. and Hoang, H.T. (2020), "Prediction of blast-induced ground vibration intensity in open-pit mines using unmanned aerial vehicle and a novel intelligence system", Nat. Resour. Res., 29, 771-790. https://doi.org/10.1007/s11053-019-09573-7.
- Bui, X.N., Nguyen, H., Tran, Q.H., Nguyen, D.A. and Bui, H.B. (2021), "Predicting ground vibrations due to mine blasting using a novel artificial neural network-based cuckoo search optimization", Nat. Resour. Res., 30(3), 2663-2685. https://doi.org/10.1007/s11053-021-09823-7.
- Chen, W., Hasanipanah, M., Rad, H.N., Armaghani, D.J. and Tahir, M.M. (2021), "A new design of evolutionary hybrid optimization of SVR model in predicting the blast-induced ground vibration", Eng. Comput., 37, 1455-1471. https://doi.org/10.1007/s00366-019-00895-x.
- Davies, B., Farmer, I.W. and Attewell, P.B. (1964), "Ground vibrations from shallow sub-surface blasts", Eng., 217, 553-559.
- Ding, Z., Nguyen, H., Bui, X., Zhou, J. and Moayedi, H. (2019), "Computational intelligence model for estimating intensity of blast-induced ground vibration in a mine based on imperialist competitive and extreme gradient boosting algorithms", Nat. Resour. Res., 29(2), 751-769. https://doi.org/10.1007/s11053-019-09548-8.
- Duvall, W.I. and Petkof, B.B. (1959), "Spherical propagation of explosion generated strain pulses in rock", US Bur Mines, RI 5483.
- Fang, Q., Nguyen, H., Bui, X.N. and Nguyen-Thoi, T. (2019a), "Prediction of blast-induced ground vibration in open-pit mines using a new technique based on imperialist competitive algorithm and M5Rules", Nat. Resour. Res., 29(2), 791-806. https://doi.org/10.1007/s11053-019-09577-3.
- Faradonbeh, R.S., Armaghani, D.J., Abd Majid, M.Z., Tahir, M. M.D., Murlidhar, B.R., Monjezi, M. and Wong, H.M. (2016), "Prediction of ground vibration due to quarry blasting based on gene expression programming: A new model for peak particle velocity prediction", Int. J. Environ. Sci. Technol., 13(6), 1453-1464. https://doi.org/10.1007/s13762-016-0979-2.
- Fattahi, H. and Hasanipanah, M. (2021), "Prediction of blast-induced ground vibration in a mine using relevance vector regression optimized by metaheuristic algorithms", Nat. Resour. Res., 30(2), 1849-1863. https://doi.org/10.1007/s11053-020-09764-7.
- Ferreira, C. (2001), "Gene expression programming: A new adaptive algorithm for solving problems", arXiv preprint cs/0102027.
- Ferreira, C. (2002), "Gene expression programming in problem solving", Soft Computing and Industry, Springer, London..
- Gandomi, A.H., Alavi, A.H. and Ryan, C. (2015), Handbook of Genetic Programming Applications, Springer.
- Ghasemi, E., Ataei, M. and Hashemolhosseini, H. (2013), "Development of a fuzzy model for predicting ground vibration caused by rock blasting in surface mining", J. Vib. Control, 19(5), 755-770. https://doi.org/10.1177/1077546312437002.
- Gholampour, A., Gandomi, A.H. and Ozbakkaloglu, T. (2017), "New formulations for mechanical properties of recycled aggregate concrete using gene expression programming", Constr. Build. Mater., 130, 122-145. https://doi.org/10.1016/j.conbuildmat.2016.10.114.
- Giustolisi, O. and Savic, D.A. (2006), "A symbolic data-driven technique based on evolutionary polynomial regression", J. Hydroinform, 8(3), 207-222. http://doi.org/10.2166/hydro.2006.020.
- Giustolisi, O. and Savic, D.A. (2009), "Advances in data-driven analyses and modelling using EPR-MOGA", J. Hydroinform., 11(3-4), 225-236. https://doi.org/10.2166/hydro.2009.017.
- Hajihassani, M., Armaghani, D.J., Monjezi, M., Mohamad, E.T. and Marto, A. (2015), "Blast-induced air and ground vibration prediction: A particle swarm optimization-based artificial neural network approach", Environ. Earth Sci., 74(4), 2799-2817. https://doi.org/10.1007/s12665-015-4274-1.
- Hasanipanah, M. and Amnieh, H.B. (2020a), "A fuzzy rule-based approach to address uncertainty in risk assessment and prediction of blast-induced Flyrock in a quarry", Nat. Resour. Res., 29(2), 669-689. https://doi.org/10.1007/s11053-020-09616-4.
- Hasanipanah, M. and Amnieh, H.B. (2020b), "Developing a new uncertain rule-based fuzzy approach for evaluating the blast-induced backbreak", Eng. Comput., 37(3), 1879-1893. https://doi.org/10.1007/s00366-019-00919-6.
- Hasanipanah, M., Faradonbeh, R.S., Amnieh, H.B., Armaghani, D.J. and Monjezi, M. (2017), "Forecasting blast-induced ground vibration developing a CART model", Eng. Comput., 33(2), 307-316. https://doi.org/10.1007/s00366-016-0475-9.
- Hasanipanah, M., Keshtegar, B., Thai, D.K. and Troung, N.T. (2020a), "An ANN adaptive dynamical harmony search algorithm to approximate the flyrock resulting from blasting", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01105-9.
- Hasanipanah, M., Monjezi, M., Shahnazar, A., Armaghani, D.J. and Farazmand, A. (2015), "Feasibility of indirect determination of blast induced ground vibration based on support vector machine", Measure., 75, 289-297. https://doi.org/10.1016/j.measurement.2015.07.019.
- Hasanipanah, M., Zhang, W., Armaghani, D.J. and Rad, H.N. (2020b), "The potential application of a new intelligent based approach in predicting the tensile strength of rock", IEEE Access, 8, 57148-57157. https://doi.org/10.1109/access.2020.2980623.
- Huang, J., Duan, T., Zhang, Y., Liu, J., Zhang, J. and Lei, Y. (2020), "Predicting the permeability of pervious concrete based on the beetle antennae search algorithm and random forest model", Adv. Civil Eng., 2020, Article ID 8863181. https://doi.org/10.1155/2020/8863181.
- Huang, J., Sun, Y. and Zhang, J. (2021), "Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm", Eng. Comput., 38(4), 3151-3168. https://doi.org/10.1007/s00366-021-01305-x.
- Jamei, M., Karbasi, M., Olumegbon, I.A., Moshraf-Dehkordi, M., Ahmadianfar, I. and Asadi, A. (2021), "Specific heat capacity of molten salt-based nanofluid in solar thermal applications: A paradigm of two modern ensemble machine learning methods", J. Molecul. Liquid., 335, 116434. https://doi.org/10.1016/j.molliq.2021.116434.
- Jelusic, P., Ivanic, A. and Lubej, S. (2021), "Prediction of blast-induced ground vibration using an adaptive network-based fuzzy inference system", Appl. Sci., 11(1), 203. https://doi.org/10.3390/app11010203.
- Kamran, M., Shahani, N.M. and Armaghani, D.J. (2022), "Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches", Geomech. Eng., 30(2), 107-121. https://doi.org/10.12989/gae.2022.30.2.107.
- Khandelwal, M., Kumar, D.L. and Yellishetty, M. (2011), "Application of soft computing to predict blast-induced ground vibration", Eng. Comput., 27(2), 117-125. https://doi.org/10.1007/s00366-009-0157-y.
- Koopialipoor, M., Fallah, A., Armaghani, D.J., Azizi, A. and Mohamad, E.T. (2019), "Three hybrid intelligent models in estimating flyrock distance resulting from blasting", Eng. Comput., 35, 243-256. https://doi.org/10.1007/s00366-018-0596-4.
- Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA.
- Kwak, N.S. and Ko, T.Y. (2022), "Machine learning-based regression analysis for estimating Cerchar abrasivity index", Geomech. Eng., 29(3), 219-228. https://doi.org/10.12989/gae.2022.29.3.219.
- Langefors, U. and Kihlstrom, B. (1963), The Modern Technique of Rock Blasting, Wiley, New York.
- Lawal, A.I., Kwon, S. and Kim, G.Y. (2021b), "Prediction of the blast-induced ground vibration in tunnel blasting using ANN, moth-flame optimized ANN, and gene expression programming", Acta Geophys., 69, 161-174. https://doi.org/10.1007/s11600-020-00532-y.
- Lawal, A.I., Kwon, S., Hammed, O.S. and Idris, M.A. (2021a), "Blast-induced ground vibration prediction in granite quarries: An application of gene expression programming, ANFIS, and sine cosine algorithm optimized ANN", Int. J. Min. Sci. Technol., 31(2), 265-277. https://doi.org/10.1016/j.ijmst.2021.01.007.
- Luat, N.V., Lee, K. and Thai, D.K. (2020a), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
- Luat, N.V., Nguyen, V.Q., Lee, S., Woo, S. and Lee, K. (2020b), "An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils", Geomech. Eng., 21(6), 583-598. https://doi.org/10.12989/gae.2020.21.6.583.
- Monjezi, M., Hasanipanah, M. and Khandelwal, M. (2013), "Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network", Neur. Comput. Appl., 22(7-8), 1637-1643. https://doi.org/10.1007/s00521-012-0856-y.
- Nguyen, H., Bui, X.N., Tran, Q.H., Nguyen, H.A., Nguyen, D.A. and Le, Q.T. (2021), "Prediction of ground vibration intensity in mine blasting using the novel hybrid MARS-PSO-MLP model", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01332-8.
- Nguyen, H., Choi, Y., Bui, X.N. and Nguyen-Thoi, T. (2020b), "Predicting blast-induced ground vibration in open-pit mines using vibration sensors and support vector regression-based optimization algorithms", Sensor., 20(1), 132. https://doi.org/10.3390/s20010132.
- Nguyen, H., Drebenstedt, C., Bui, X.N. and Bui, D.T. (2020a), "Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network", Nat. Resour. Res., 29, 691-709. https://doi.org/10.1007/s11053-019-09470-z.
- Rajabi, A.M. and Vafaee, A. (2020), Prediction of blast-induced ground vibration using empirical models and artificial neural network (Bakhtiari Dam access tunnel, as a case study)", J. Vib. Control, 26(7-8), 520-531. https://doi.org/10.1177/1077546319889844.
- Rehamnia, I., Benlaoukli, B., Jamei, M., Karbasi, M. and Anurag M. (2021), "Simulation of seepage flow through embankment dam by using a novel extended kalman filter based neural network paradigm: case study of fontaine Gazelles Dam, Algeria", Measure., 176, 109219. https://doi.org/10.1016/j.measurement.2021.109219.
- Saadat, M., Khandelwal, M. and Monjezi, M. (2014), "An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran", J. Rock Mech. Geotech. Eng., 6(1), 67-76. https://doi.org/10.1016/j.jrmge.2013.11.001.
- Sasmal, S.K. and Behera, R.N. (2021), "Application of artificial intelligence methods for predicting transient response of foundation", Geomech. Eng., 27(3), 197-211. https://doi.org/10.12989/gae.2021.27.3.197.
- Shams, M.A., Shahin, M.A. and Ismail, M.A. (2020), "Design of stiffened slab foundations on reactive soils using 3D numerical modeling", Int. J. Geomech., 20(7), 04020097. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001654.
- Wang, H.L., Yin, Z.Y., Zhang, P. and Jin, Y.F. (2020), "Straightforward prediction for air-entry value of compacted soils using machine learning algorithms", Eng. Geol., 279, 105911. https://doi.org/10.1016/j.enggeo.2020.105911.
- Yu, Z., Shi, X., Zhou, J., Chen, X. and Qiu, X. (2020), "Effective assessment of blast-induced ground vibration using an optimized random forest model based on a Harris hawks optimization algorithm", Appl. Sci., 10(4), 1403. https://doi.org/10.3390/app10041403.
- Zhang W., Zhang Y., Gu X., Wu C., Han L. (2022), "Prediction for TBM penetration rate using four hyperparameter optimization methods and RF model", Application of Soft Computing, Machine Learning, Deep Learning and Optimizations in Geoengineering and Geoscience, Springer, Singapore.
- Zhang, J., Sun, Y., Li, G., Wang, Y., Sun, J. and Li, J. (2020), "Machine-learning-assisted shear strength prediction of reinforced concrete beams with and without stirrups", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-020-01076-x.
- Zhang, W., Li, H., Li, Y., Liu, H., Chen, Y. and Ding, X. (2021a), "Application of deep learning algorithms in geotechnical engineering: A short critical review", Artif. Intel. Rev., 54, 5633-5673. https://doi.org/10.1007/s10462-021-09967-1.
- Zhang, X., Nguyen, H., Bui, X.N., Tran, Q.H., Nguyen, D.A., Tien Bui, D. and Moayedi, H. (2019), "Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost", Nat. Resour. Res., 29(2), 711-721. https://doi.org/10.1007/s11053-019-09492-7.
- Zhang, Y., Wen, H., Xie, P., Hu, D., Zhang, J. and Zhang, W. (2021b), "Hybrid-optimized logistic regression model of landslide susceptibility along mountain highway", Bull. Eng. Geol. Environ., 80(10), 7385-7401. https://doi.org/10.1007/s10064-021-02415-y.
- Zhou, J., Asteris, P.G., Armaghani, D.J. and Pham, B.T. (2020), "Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models", Soil Dyn. Earthq. Eng., 139, 106390. https://doi.org/10.1016/j.soildyn.2020.106390.
- Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S. and Mitri, H.S. (2019) "Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories", Saf. Sci., 118, 505-518. https://doi.org/10.1016/j.ssci.2019.05.046.
- Zhou, J., Li, X. and Mitri, H.S. (2015), "Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction", Nat. Hazard., 79, 291-316. https://doi.org/10.1007/s11069-015-1842-3.
- Zhou, J., Shi, X. and Li, X. (2016), "Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining", J. Vib. Control, 22(19), 3986-3997. https://doi.org/10.1177/1077546314568172.
- Zhou, J., Shi, X., Du, K., Qiu, X., Li, X. and Mitri, H.S. (2017), "Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel", Int. J. Geomech., 17(6), 04016129. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000817.
- Zhu, W., Rad, H.N. and Hasanipanah, M. (2021), "A chaos recurrent ANFIS optimized by PSO to predict ground vibration generated in rock blasting", Appl. Soft Comput., 108, 107434. https://doi.org/10.1016/j.asoc.2021.107434.
- Zuhaira, A.A., Al-Hamd, R.K.S., Alzabeebee, S. and Cunningham, L.S. (2021), "Numerical investigation of skimming flow characteristics over non-uniform gabion-stepped spillways", Innov. Infrastr. Solut., 6, 225. https://doi.org/10.1007/s41062-021-00579-w.