Acknowledgement
이 연구는 수자원공사의 개방형 R&D(21-BT-002)의 지원에 의해서 수행되었습니다.
References
- Brunone, B. (1999). Transient test-based technique for leak detection in out-fall pipes, J. Water Resour. Plan. Manag., 125(5), 302-306. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(302)
- Chaudhry, M.H. (2014). Applied Hydraulic Transients. 3rd Ed., Van Nostrand Reinhold, New York.
- Covas, D., Ramos, H., and Almeida, A.B. (2005). "Impulse response method for solving hydraulic transients in viscoelastic pipes", XXXI IAHR Congress. IAHR, Seoul, Korea.
- Covas, D.I.C. and Ramos, H.M. (2010). Case studies of leak detection and location in water pipe systems by inverse transient analysis, J. Water Resour. Plan. Manag., 136(2), 248-257. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:2(248)
- Gong, J., Simpson, A.R., Lambert, M.F., Zecchin, A.C., Kim, Y.I., and Tijsseling, A.S. (2013). Detection of distributed deterioration in single pipes using transient reflections, J. Pipeline Syst. Eng. Pract., 4(1), 32-40. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000111
- Kapelan, Z.S., Savic, D.A. and Walters, G.A. (2003). A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks, J. Hydraul. Res., 41(5), 481-492. https://doi.org/10.1080/00221680309499993
- Kim, S.H. (2007). Impedance matrix method for transient analysis of complicated pipe networks, J. Hydraul. Res., 45(6), 818-828. https://doi.org/10.1080/00221686.2007.9521819
- Kim, S.H. (2008). Address-oriented impedance matrix method for generic calibration of heterogeneous pipe network systems, J. Hydraul. Eng., 134(1), 66-75. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(66)
- Kim, S.H. (2020). Control-oriented impedance matrix and alternative transient control for pipe network systems, Water Resour. Manag., 34(11), 3499-3513. https://doi.org/10.1007/s11269-020-02625-1
- Lee, P.J., Vitkovsky, J.P., Lambert, M.F., Simpson, A.R. and Liggett, J.A. (2007). Leak location in pipelines using the impulse response function, J. Hydraul. Res., 45(5), 643-652. https://doi.org/10.1080/00221686.2007.9521800
- Liggett, J.A. and Chen, L.C. (1994). Inverse transient analysis in pipe networks, J. Hydraul. Eng., 120(8), 934-955. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(934)
- Liu, Z. and Simpson, A.R. (2018). Influence of connection stub parameters and valve closure time on transient measurement accuracy of a pressure transducer, Water Sci. Techol. Water Supply, 18(6), 1984-1995. https://doi.org/10.2166/ws.2018.022
- Stephen, M.L., Lambert, M.F. and Simpson, A.R. (2013). Determining the internal wall condition of a water pipeline in the field using an inverse transient, J. Hydraul. Eng., 139(3), 310-324. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000665
- Streeter, V.L. and Wylie, E.B. (1993). Fluid Transients in Systems. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632.
- Suo, L. and Wylie, E.B. (1989). Impulse response method for frequency-dependent pipeline transients, J. Fluids Eng., 111(4), 478-483. https://doi.org/10.1115/1.3243671
- Vitkovsky, J.P., Simpson, A.R. and Lambert, M.F. (2000). Leak detection and calibration using transients and genetic algorithms, J. Water Resour. Plan. Manag., 126(4), 262-265. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:4(262)
- Vitkovsky, J.P., Lambert, M.F., Simpson, A.R. and Liggett, J.A. (2007). Experimental observation and analysis of inverse transients for pipeline leak detection, J. Water Resour. Plan. Manag., 133(6), 519-530. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:6(519)
- Wang, X.-J., Lambert, M.F., Simpson, A.R., Liggett, J.A. and Vitkovsky, J.P. (2002). Leak detection in pipelines using the damping of fluid transients, J. Hydraul. Eng., 128(7), 697-711. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(697)
- Wang, X.J., Lambert, M.F. and Simpson, A.R. (2005). Leak detection in pipelines using the damping of fluid transients, J. Water Resour. Plan. Manag., 128(7), 697-711.