DOI QR코드

DOI QR Code

A pressure based flow velocity estimation technique using inverse impedance for simple pressurized pipeline systems

피압 단순 관로 체제에서의 인버스 임피던스를 이용한 수압기반 유속추정기술

  • Lee, Jeongseop (Research Institute of Industrial Technology, Pusan National University) ;
  • Ko, Dongwon (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Choi, Dooyong (K-water Institute, K-water) ;
  • Kim, Sanghyun (Department of Civil and Environmental Engineering, Pusan National University)
  • 이정섭 (부산대학교 생산기술연구소) ;
  • 고동원 (부산대학교 공과대학 사회환경시스템공학과) ;
  • 최두용 (한국수자원공사) ;
  • 김상현 (부산대학교 공과대학 사회환경시스템공학과)
  • Received : 2022.06.02
  • Accepted : 2022.08.11
  • Published : 2022.08.15

Abstract

In this study, we propose a flow velocity evaluation scheme based on pressure measurement in pressurized pipeline systems. Conservation of mass and momentum equations can be decomposed into mean and perturbation of pressure head and flowrate, which provide the pressure head and flowrate relationship between upstream and donwstream point in pressurized pipeline system. The inverse impedance formulations were derived to address measured pressure at downstream to evaluation of flow velocity or pressure at any point of system. The convolution of response function to pressure head in downstream valve provides the flow velocity response in any point of the simple pipeline system. Simulation comparison between traditional method of characteristics and the proposed method provide good agreements between two distinct approaches.

Keywords

Acknowledgement

이 연구는 수자원공사의 개방형 R&D(21-BT-002)의 지원에 의해서 수행되었습니다.

References

  1. Brunone, B. (1999). Transient test-based technique for leak detection in out-fall pipes, J. Water Resour. Plan. Manag., 125(5), 302-306. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(302)
  2. Chaudhry, M.H. (2014). Applied Hydraulic Transients. 3rd Ed., Van Nostrand Reinhold, New York.
  3. Covas, D., Ramos, H., and Almeida, A.B. (2005). "Impulse response method for solving hydraulic transients in viscoelastic pipes", XXXI IAHR Congress. IAHR, Seoul, Korea.
  4. Covas, D.I.C. and Ramos, H.M. (2010). Case studies of leak detection and location in water pipe systems by inverse transient analysis, J. Water Resour. Plan. Manag., 136(2), 248-257. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:2(248)
  5. Gong, J., Simpson, A.R., Lambert, M.F., Zecchin, A.C., Kim, Y.I., and Tijsseling, A.S. (2013). Detection of distributed deterioration in single pipes using transient reflections, J. Pipeline Syst. Eng. Pract., 4(1), 32-40. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000111
  6. Kapelan, Z.S., Savic, D.A. and Walters, G.A. (2003). A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks, J. Hydraul. Res., 41(5), 481-492. https://doi.org/10.1080/00221680309499993
  7. Kim, S.H. (2007). Impedance matrix method for transient analysis of complicated pipe networks, J. Hydraul. Res., 45(6), 818-828. https://doi.org/10.1080/00221686.2007.9521819
  8. Kim, S.H. (2008). Address-oriented impedance matrix method for generic calibration of heterogeneous pipe network systems, J. Hydraul. Eng., 134(1), 66-75. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:1(66)
  9. Kim, S.H. (2020). Control-oriented impedance matrix and alternative transient control for pipe network systems, Water Resour. Manag., 34(11), 3499-3513. https://doi.org/10.1007/s11269-020-02625-1
  10. Lee, P.J., Vitkovsky, J.P., Lambert, M.F., Simpson, A.R. and Liggett, J.A. (2007). Leak location in pipelines using the impulse response function, J. Hydraul. Res., 45(5), 643-652. https://doi.org/10.1080/00221686.2007.9521800
  11. Liggett, J.A. and Chen, L.C. (1994). Inverse transient analysis in pipe networks, J. Hydraul. Eng., 120(8), 934-955. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(934)
  12. Liu, Z. and Simpson, A.R. (2018). Influence of connection stub parameters and valve closure time on transient measurement accuracy of a pressure transducer, Water Sci. Techol. Water Supply, 18(6), 1984-1995. https://doi.org/10.2166/ws.2018.022
  13. Stephen, M.L., Lambert, M.F. and Simpson, A.R. (2013). Determining the internal wall condition of a water pipeline in the field using an inverse transient, J. Hydraul. Eng., 139(3), 310-324. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000665
  14. Streeter, V.L. and Wylie, E.B. (1993). Fluid Transients in Systems. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632.
  15. Suo, L. and Wylie, E.B. (1989). Impulse response method for frequency-dependent pipeline transients, J. Fluids Eng., 111(4), 478-483. https://doi.org/10.1115/1.3243671
  16. Vitkovsky, J.P., Simpson, A.R. and Lambert, M.F. (2000). Leak detection and calibration using transients and genetic algorithms, J. Water Resour. Plan. Manag., 126(4), 262-265. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:4(262)
  17. Vitkovsky, J.P., Lambert, M.F., Simpson, A.R. and Liggett, J.A. (2007). Experimental observation and analysis of inverse transients for pipeline leak detection, J. Water Resour. Plan. Manag., 133(6), 519-530. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:6(519)
  18. Wang, X.-J., Lambert, M.F., Simpson, A.R., Liggett, J.A. and Vitkovsky, J.P. (2002). Leak detection in pipelines using the damping of fluid transients, J. Hydraul. Eng., 128(7), 697-711. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(697)
  19. Wang, X.J., Lambert, M.F. and Simpson, A.R. (2005). Leak detection in pipelines using the damping of fluid transients, J. Water Resour. Plan. Manag., 128(7), 697-711.