DOI QR코드

DOI QR Code

Image-based fire area segmentation method by removing the smoke area from the fire scene videos

화재 현장 영상에서 연기 영역을 제외한 이미지 기반 불의 영역 검출 기법

  • Received : 2022.06.11
  • Accepted : 2022.08.23
  • Published : 2022.09.01

Abstract

In this paper, we propose an algorithm that can accurately segment a fire even when it is surrounded by smoke of a similar color. Existing fire area segmentation algorithms have a problem in that they cannot separate fire and smoke from fire images. In this paper, the fire was successfully separated from the smoke by applying the color compensation method and the fog removal method as a preprocessing process before applying the fire area segmentation algorithm. In fact, it was confirmed that it segments fire more effectively than the existing methods in the image of the fire scene covered with smoke. In addition, we propose a method that can use the proposed fire segmentation algorithm for efficient fire detection in factories and homes.

본 논문에서는 불이 비슷한 색의 연기로 둘러싸여 있더라도 정확하게 검출할 수 있는 알고리즘을 제안한다. 기존 불 영역 검출 알고리즘들은 화재 이미지에서 불과 연기를 잘 분리해내지 못하는 문제점이 있었다. 본 논문에서는 불 영역 검출 알고리즘을 적용하기 전에 전처리 과정으로써 색상 보정 기법과 안개 제거 기법을 적용함으로써 성공적으로 불을 연기로부터 분리해냈다. 실제로 연기로 뒤덮인 화재 현장의 이미지들에서 기존 기법들보다 불을 더 효과적으로 검출하는 것을 확인할 수 있었다. 또한 제안한 화재 검출 알고리즘을 공장, 가정 등에서 효율적인 화재 탐지를 위해 사용할 수 있는 방법을 제안한다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원(No.2022-0-00288,실감콘텐츠핵심기술개발(R&D) 사업) 받아 수행된 연구임.

References

  1. S.-J. Chen, D. C. Hovde, K. A. Peterson, and A.W. Marshall, "Fire detection using smoke and gas sensors," Fire Safety Journal, vol. 42, no. 8, pp. 507-515, 2007. https://doi.org/10.1016/j.firesaf.2007.01.006
  2. D. Kang, E. Kim, P. Moon, W. Sin, and M.-g. Kang, "Design and analysis of flame signal detection with the combination of uv/ir sensors," Journal of Internet Computing and Services, vol. 14, no. 2, pp. 45-51, 2013. https://doi.org/10.7472/JKSII.2013.14.2.45
  3. B. C. Ko, K.-H. Cheong, and J.-Y. Nam, "Fire detection based on vision sensor and support vector machines," Fire Safety Journal, vol. 44, no. 3, pp. 322-329, 2009. https://doi.org/10.1016/j.firesaf.2008.07.006
  4. R. Xu, H. Lin, K. Lu, L. Cao, and Y. Liu, "A forest fire detection system based on ensemble learning," Forests, vol. 12, no. 2, p. 217, 2021. https://doi.org/10.3390/f12020217
  5. R. Bogue, "Sensors for fire detection," Sensor Review, 2013.
  6. T.-H. Chen, P.-H. Wu, and Y.-C. Chiou, "An early firedetection method based on image processing," in 2004 International Conference on Image Processing, 2004. ICIP'04., vol. 3. IEEE, 2004, pp. 1707-1710.
  7. B. U. Toreyin, Y. Dedeoglu, U. Gudukbay, and A. E. Cetin, "Computer vision based method for real-time fire and flame detection," Pattern recognition letters, vol. 27, no. 1, pp. 49-58, 2006. https://doi.org/10.1016/j.patrec.2005.06.015
  8. T. Celik and H. Demirel, "Fire detection in video sequences using a generic color model," Fire safety journal, vol. 44, no. 2, pp. 147-158, 2009. https://doi.org/10.1016/j.firesaf.2008.05.005
  9. A. Gunawaardena, R. Ruwanthika, and A. Jayasekara, "Computer vision based fire alarming system," in 2016 Moratuwa Engineering Research Conference (MERCon). IEEE, 2016, pp. 325-330.
  10. W.-B. Horng, J.-W. Peng, and C.-Y. Chen, "A new imagebased real-time flame detection method using color analysis," in Proceedings. 2005 IEEE Networking, Sensing and Control, 2005. IEEE, 2005, pp. 100-105.
  11. T. Celik, "Fast and efficient method for fire detection using image processing," ETRI journal, vol. 32, no. 6, pp. 881-890, 2010. https://doi.org/10.4218/etrij.10.0109.0695
  12. C. E. Premal and S. Vinsley, "Image processing based forest fire detection using ycbcr colour model," in 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014]. IEEE, 2014, pp. 1229-1237.
  13. X. Chen, Q. An, K. Yu, and Y. Ban, "A novel fire identification algorithm based on improved color segmentation and enhanced feature data," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-15, 2021.
  14. S. Frizzi, R. Kaabi, M. Bouchouicha, J.-M. Ginoux, E. Moreau, and F. Fnaiech, "Convolutional neural network for video fire and smoke detection," in IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016, pp. 877-882.
  15. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, "Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 0.5 mb model size," arXiv preprint arXiv:1602.07360, 2016.
  16. K. Muhammad, J. Ahmad, Z. Lv, P. Bellavista, P. Yang, and S. W. Baik, "Efficient deep cnn-based fire detection and localization in video surveillance applications," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 7, pp. 1419-1434, 2018.
  17. S. Geetha, C. Abhishek, and C. Akshayanat, "Machine vision based fire detection techniques: a survey," Fire Technology, vol. 57, no. 2, pp. 591-623, 2021. https://doi.org/10.1007/s10694-020-01064-z
  18. H. Koschmieder, "Theorie der horizontalen sichtweite," Beitrage zur Physik der freien Atmosphare, pp. 33-53, 1924.
  19. K. He, J. Sun, and X. Tang, "Single image haze removal using dark channel prior," IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 12, pp. 2341-2353, 2010.
  20. Q. Zhu, J. Mai, and L. Shao, "A fast single image haze removal algorithm using color attenuation prior," IEEE transactions on image processing, vol. 24, no. 11, pp. 3522-3533, 2015. https://doi.org/10.1109/TIP.2015.2446191
  21. C. O. Ancuti and C. Ancuti, "Single image dehazing by multi-scale fusion," IEEE Transactions on Image Processing, vol. 22, no. 8, pp. 3271-3282, 2013. https://doi.org/10.1109/TIP.2013.2262284
  22. C. Ancuti, C. O. Ancuti, C. De Vleeschouwer, and A. C. Bovik, "Night-time dehazing by fusion," in 2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016, pp. 2256-2260.
  23. C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and M. Sbert, "Color channel compensation (3c): A fundamental preprocessing step for image enhancement," IEEE Transactions on Image Processing, vol. 29, pp. 2653-2665, 2019.
  24. C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and P. Bekaert, "Color balance and fusion for underwater image enhancement," IEEE Transactions on image processing, vol. 27, no. 1, pp. 379-393, 2017.
  25. K. He, J. Sun, and X. Tang, "Guided image filtering," IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 6, pp. 1397-1409, 2012.
  26. M. T. Cazzolato, L. Avalhais, D. Chino, J. S. Ramos, J. A. de Souza, J. F. Rodrigues-Jr, and A. Traina, "Fismo: A compilation of datasets from emergency situations for fire and smoke analysis," in Brazilian Symposium on Databases-SBBD. SBC, 2017, pp. 213-223.
  27. A. Saied, "Fire dataset." [Online]. Available: https://www.kaggle.com/datasets/phylake1337/fire-dataset
  28. 조시훈, 김태영, et al., "카메라 기반 강화학습을 이용한 드론 장애물 회피 알고리즘," Journal of the Korea Computer Graphics Society, vol. 27, no. 5, pp. 63-71, 2021. https://doi.org/10.15701/kcgs.2021.27.5.63
  29. R. Adams and L. Bischof, "Seeded region growing," IEEE Transactions on pattern analysis and machine intelligence, vol. 16, no. 6, pp. 641-647, 1994. https://doi.org/10.1109/34.295913