Acknowledgement
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원(No.2022-0-00288,실감콘텐츠핵심기술개발(R&D) 사업) 받아 수행된 연구임.
References
- S.-J. Chen, D. C. Hovde, K. A. Peterson, and A.W. Marshall, "Fire detection using smoke and gas sensors," Fire Safety Journal, vol. 42, no. 8, pp. 507-515, 2007. https://doi.org/10.1016/j.firesaf.2007.01.006
- D. Kang, E. Kim, P. Moon, W. Sin, and M.-g. Kang, "Design and analysis of flame signal detection with the combination of uv/ir sensors," Journal of Internet Computing and Services, vol. 14, no. 2, pp. 45-51, 2013. https://doi.org/10.7472/JKSII.2013.14.2.45
- B. C. Ko, K.-H. Cheong, and J.-Y. Nam, "Fire detection based on vision sensor and support vector machines," Fire Safety Journal, vol. 44, no. 3, pp. 322-329, 2009. https://doi.org/10.1016/j.firesaf.2008.07.006
- R. Xu, H. Lin, K. Lu, L. Cao, and Y. Liu, "A forest fire detection system based on ensemble learning," Forests, vol. 12, no. 2, p. 217, 2021. https://doi.org/10.3390/f12020217
- R. Bogue, "Sensors for fire detection," Sensor Review, 2013.
- T.-H. Chen, P.-H. Wu, and Y.-C. Chiou, "An early firedetection method based on image processing," in 2004 International Conference on Image Processing, 2004. ICIP'04., vol. 3. IEEE, 2004, pp. 1707-1710.
- B. U. Toreyin, Y. Dedeoglu, U. Gudukbay, and A. E. Cetin, "Computer vision based method for real-time fire and flame detection," Pattern recognition letters, vol. 27, no. 1, pp. 49-58, 2006. https://doi.org/10.1016/j.patrec.2005.06.015
- T. Celik and H. Demirel, "Fire detection in video sequences using a generic color model," Fire safety journal, vol. 44, no. 2, pp. 147-158, 2009. https://doi.org/10.1016/j.firesaf.2008.05.005
- A. Gunawaardena, R. Ruwanthika, and A. Jayasekara, "Computer vision based fire alarming system," in 2016 Moratuwa Engineering Research Conference (MERCon). IEEE, 2016, pp. 325-330.
- W.-B. Horng, J.-W. Peng, and C.-Y. Chen, "A new imagebased real-time flame detection method using color analysis," in Proceedings. 2005 IEEE Networking, Sensing and Control, 2005. IEEE, 2005, pp. 100-105.
- T. Celik, "Fast and efficient method for fire detection using image processing," ETRI journal, vol. 32, no. 6, pp. 881-890, 2010. https://doi.org/10.4218/etrij.10.0109.0695
- C. E. Premal and S. Vinsley, "Image processing based forest fire detection using ycbcr colour model," in 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014]. IEEE, 2014, pp. 1229-1237.
- X. Chen, Q. An, K. Yu, and Y. Ban, "A novel fire identification algorithm based on improved color segmentation and enhanced feature data," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-15, 2021.
- S. Frizzi, R. Kaabi, M. Bouchouicha, J.-M. Ginoux, E. Moreau, and F. Fnaiech, "Convolutional neural network for video fire and smoke detection," in IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016, pp. 877-882.
- F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, "Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 0.5 mb model size," arXiv preprint arXiv:1602.07360, 2016.
- K. Muhammad, J. Ahmad, Z. Lv, P. Bellavista, P. Yang, and S. W. Baik, "Efficient deep cnn-based fire detection and localization in video surveillance applications," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 7, pp. 1419-1434, 2018.
- S. Geetha, C. Abhishek, and C. Akshayanat, "Machine vision based fire detection techniques: a survey," Fire Technology, vol. 57, no. 2, pp. 591-623, 2021. https://doi.org/10.1007/s10694-020-01064-z
- H. Koschmieder, "Theorie der horizontalen sichtweite," Beitrage zur Physik der freien Atmosphare, pp. 33-53, 1924.
- K. He, J. Sun, and X. Tang, "Single image haze removal using dark channel prior," IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 12, pp. 2341-2353, 2010.
- Q. Zhu, J. Mai, and L. Shao, "A fast single image haze removal algorithm using color attenuation prior," IEEE transactions on image processing, vol. 24, no. 11, pp. 3522-3533, 2015. https://doi.org/10.1109/TIP.2015.2446191
- C. O. Ancuti and C. Ancuti, "Single image dehazing by multi-scale fusion," IEEE Transactions on Image Processing, vol. 22, no. 8, pp. 3271-3282, 2013. https://doi.org/10.1109/TIP.2013.2262284
- C. Ancuti, C. O. Ancuti, C. De Vleeschouwer, and A. C. Bovik, "Night-time dehazing by fusion," in 2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016, pp. 2256-2260.
- C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and M. Sbert, "Color channel compensation (3c): A fundamental preprocessing step for image enhancement," IEEE Transactions on Image Processing, vol. 29, pp. 2653-2665, 2019.
- C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and P. Bekaert, "Color balance and fusion for underwater image enhancement," IEEE Transactions on image processing, vol. 27, no. 1, pp. 379-393, 2017.
- K. He, J. Sun, and X. Tang, "Guided image filtering," IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 6, pp. 1397-1409, 2012.
- M. T. Cazzolato, L. Avalhais, D. Chino, J. S. Ramos, J. A. de Souza, J. F. Rodrigues-Jr, and A. Traina, "Fismo: A compilation of datasets from emergency situations for fire and smoke analysis," in Brazilian Symposium on Databases-SBBD. SBC, 2017, pp. 213-223.
- A. Saied, "Fire dataset." [Online]. Available: https://www.kaggle.com/datasets/phylake1337/fire-dataset
- 조시훈, 김태영, et al., "카메라 기반 강화학습을 이용한 드론 장애물 회피 알고리즘," Journal of the Korea Computer Graphics Society, vol. 27, no. 5, pp. 63-71, 2021. https://doi.org/10.15701/kcgs.2021.27.5.63
- R. Adams and L. Bischof, "Seeded region growing," IEEE Transactions on pattern analysis and machine intelligence, vol. 16, no. 6, pp. 641-647, 1994. https://doi.org/10.1109/34.295913