Acknowledgement
이 논문은 2022년도 정부 (과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원 (No.2022-0-00288, 실감콘텐츠핵심기술개발 (R&D) 사업, 50%)과 2019년도 정부 (미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2019R1A2C1008244, 중견연구자지원사업, 50%)
References
- J. J. Monaghan, "Smoothed particle hydrodynamics," Annual review of astronomy and astrophysics, vol. 30, pp. 543-574, 1992. https://doi.org/10.1146/annurev.aa.30.090192.002551
- F. A. Tavarez and M. E. Plesha, "Discrete element method for modelling solid and particulate materials," International journal for numerical methods in engineering, vol. 70, no. 4, pp. 379-404, 2007. https://doi.org/10.1002/nme.1881
- J. U. Brackbill and H. M. Ruppel, "Flip: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions," Journal of Computational physics, vol. 65, no. 2, pp. 314-343, 1986. https://doi.org/10.1016/0021-9991(86)90211-1
- F. H. Harlow, "The particle-in-cell method for numerical solution of problems in fluid dynamics," Los Alamos National Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 1962.
- 김종현 et al., "안정적이고 이방성한 빙결 모델링을 위한 암시적 비압축성 유체와 얼음 입자간의 상호작용 기법," Journal of the Korea Computer Graphics Society, vol. 26, no. 5, pp. 1-13, 2020.
- A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle, "A material point method for snow simulation," ACM Transactions on Graphics (TOG), vol. 32, no. 4, pp. 1-10, 2013.
- W. T. Solowski, M. Berzins, W. M. Coombs, J. E. Guilkey, M. Moller, Q. A. Tran, T. Adibaskoro, S. Seyedan, R. Tielen, and K. Soga, "Material point method: Overview and challenges ahead," Advances in Applied Mechanics, vol. 54, pp. 113-204, 2021. https://doi.org/10.1016/bs.aams.2020.12.002
- O. C. Zienkiewicz, R. L. Taylor, R. L. Taylor, and R. L. Taylor, The finite element method: solid mechanics. Butterworth-heinemann, 2000, vol. 2.
- G. D. Smith, G. D. Smith, and G. D. S. Smith, Numerical solution of partial differential equations: finite difference methods. Oxford university press, 1985.
- Y. Zhu and R. Bridson, "Animating sand as a fluid," ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 965-972, 2005. https://doi.org/10.1145/1073204.1073298
- D. Sulsky, Z. Chen, and H. L. Schreyer, "A particle method for history-dependent materials," Computer methods in applied mechanics and engineering, vol. 118, no. 1-2, pp. 179-196, 1994. https://doi.org/10.1016/0045-7825(94)90112-0
- G. Kl'ar, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran, "Drucker-prager elastoplasticity for sand animation," ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1-12, 2016.
- Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun, "Continuum foam: A material point method for shear-dependent flows," ACM Transactions on Graphics (TOG), vol. 34, no. 5, pp. 1-20, 2015.
- C. Jiang, T. Gast, and J. Teran, "Anisotropic elastoplasticity for cloth, knit and hair frictional contact," ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1-14, 2017.
- Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran, "A material point method for thin shells with frictional contact," ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1-15, 2018.
- J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. Jiang, "Cd-mpm: continuum damage material point methods for dynamic fracture animation," ACM Transactions on Graphics (TOG), vol. 38, no. 4, pp. 1-15, 2019.
- W. Joshuah, C. Yunuo, L. Minchen, F. Yu, Q. Ziyin, L. Jiecong, C. Meggie, and J. Chenfanfu, "Anisompm: Animating anisotropic damage mechanics," ACM Transactions on Graphics (TOG), vol. 39, no. 4, pp. 37-1, 2020.
- A. Griffith and J. J. Gilman, "The phenomena of rupture and flow in solids," Transactions of the ASM, vol. 61, pp. 855-906, 1968.
- L. D. Landau, The classical theory of fields. Elsevier, 2013, vol. 2.
- Y. Fei, Q. Guo, R. Wu, L. Huang, and M. Gao, "Revisiting integration in the material point method: a scheme for easier separation and less dissipation," ACM Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1-16, 2021.
- C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin, "The affine particle-in-cell method," ACM Transactions on Graphics (TOG), vol. 34, no. 4, pp. 1-10, 2015.
- K.-H. Kim, J. Lee, C.-H. Kim, and J.-H. Kim, "Visual simulation of turbulent foams by incorporating the angular momentum of foam particles into the projective framework," Applied Sciences, vol. 12, no. 1, p. 133, 2021. https://doi.org/10.3390/app12010133
- A. Hoger and D. E. Carlson, "Determination of the stretch and rotation in the polar decomposition of the deformation gradient," Quarterly of applied mathematics, vol. 42, no. 1, pp. 113-117, 1984. https://doi.org/10.1090/qam/736511
- P. F. Pai, A. N. Palazotto, and J. M. Greer Jr, "Polar decomposition and appropriate strains and stresses for nonlinear structural analyses," Computers & structures, vol. 66, no. 6, pp. 823-840, 1998. https://doi.org/10.1016/S0045-7949(98)00004-2
- Y. Hu, "Taichi: An open-source computer graphics library," arXiv preprint arXiv:1804.09293, 2018.
- T. Belytschko and M. Tabbara, "Dynamic fracture using element-free galerkin methods," International Journal for Numerical Methods in Engineering, vol. 39, no. 6, pp. 923-938, 1996. https://doi.org/10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
- T. Belytschko, Y. Y. Lu, and L. Gu, "Element-free galerkin methods," International journal for numerical methods in engineering, vol. 37, no. 2, pp. 229-256, 1994. https://doi.org/10.1002/nme.1620370205
- Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang, "A moving least squares material point method with displacement discontinuity and two-way rigid body coupling," ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1-14, 2018.
- T. Hadrich, M. Makowski,W. Palubicki, D. T. Banuti, S. Pirk, and D. L. Michels, "Stormscapes: simulating cloud dynamics in the now," ACM Transactions on Graphics (TOG), vol. 39, no. 6, pp. 1-16, 2020.
- 민혜정,김영준, et al., "Gpu가속을 이용한 점집합 렌더링을 위한 전역조명기법," Journal of the Korea Computer Graphics Society, vol. 26, no. 1, pp. 7-15, 2020. https://doi.org/10.15701/kcgs.2020.26.1.7
- D. Sulsky, S.-J. Zhou, and H. L. Schreyer, "Application of a particle-in-cell method to solid mechanics," Computer physics communications, vol. 87, no. 1-2, pp. 236-252, 1995. https://doi.org/10.1016/0010-4655(94)00170-7