DOI QR코드

DOI QR Code

MPM-Based Angular Animation of Particles using Polar Decomposition Theory

극 분해 이론을 활용한 MPM기반의 입자 회전 애니메이션

  • Received : 2022.06.10
  • Accepted : 2022.08.23
  • Published : 2022.09.01

Abstract

In this paper, we propose a single framework based on the MPM(Material Point Method) that can represent the dynamic angular motion of the elementary particle unit. In this study, the particles can have various shapes while also describing linear and angular motion. As a result, unlike other particle-based simulations, which only represent linear movements of spherical (e.g. Circle, Sphere) particles, it is possible to express the visually dynamic motion of them. The proposed framework utilizes MPM, due to the fact that rotational motion can be decomposed and derived from large deformation. During the integration process of the presented technique, a deformation gradient tensor is decomposed by polar decomposition theory for extracting rotation tensor. By applying this together with the linear motion of each particle, as a result, it is possible to simultaneously express the angluar and linear motion of the particle itself. To verify the proposed method, we show the simulation of rotating particles scattering in the wind field, and the interaction(e.g. Collision) between a moving object and them by comparing the traditional MPM

본 논문에서는 최소 입자 단위의 역동적인 회전 움직임을 나타낼 수 있는 MPM(Material Point Method) 기반 단일 프레임워크를 소개한다. 우리가 표현하고자 하는 입자는 다양한 형상(Shape)을 가질 수 있음과 동시에, 선형(Linear momentum), 회전(Angular momentum) 운동을 함께 묘사할 수 있다. 그 결과 기존 구형 입자의 선형 움직임만을 나타내던 입자 기반 시뮬레이션과는 달리, 시각적으로 단일 입자의 역동적인 모습을 표현할 수 있다. 제안하는 프레임워크는 회전 운동을 큰 변형(Large Deformation)으로부터 분해 및 추출 할 수 있다는 점에서 MPM을 활용하였다. 본 기법은 MPM 적분 과정 중 계산되는 변형 구배 텐서(Deformation Gradient Tensor)를 극 분해(Polar Decomposition)하는 과정을 통해 회전 텐서(Rotation Tensor)를 추출하고, 각 입자의 선형 운동과 함께 이를 적용하여 결과적으로 입자 자체의 회전, 선형 운동을 동시에 표현 하는 것이 가능하다. 본 연구에서는 제안하는 기법의 검증을 위해 바람에 흩날리며 회전하는 입자의 모습 및 움직이는 물체와 정지한 입자간의 상호작용 시뮬레이션을 기존 MPM을 이용한 시뮬레이션과의 비교를 통해 진행하였다.

Keywords

Acknowledgement

이 논문은 2022년도 정부 (과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원 (No.2022-0-00288, 실감콘텐츠핵심기술개발 (R&D) 사업, 50%)과 2019년도 정부 (미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2019R1A2C1008244, 중견연구자지원사업, 50%)

References

  1. J. J. Monaghan, "Smoothed particle hydrodynamics," Annual review of astronomy and astrophysics, vol. 30, pp. 543-574, 1992. https://doi.org/10.1146/annurev.aa.30.090192.002551
  2. F. A. Tavarez and M. E. Plesha, "Discrete element method for modelling solid and particulate materials," International journal for numerical methods in engineering, vol. 70, no. 4, pp. 379-404, 2007. https://doi.org/10.1002/nme.1881
  3. J. U. Brackbill and H. M. Ruppel, "Flip: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions," Journal of Computational physics, vol. 65, no. 2, pp. 314-343, 1986. https://doi.org/10.1016/0021-9991(86)90211-1
  4. F. H. Harlow, "The particle-in-cell method for numerical solution of problems in fluid dynamics," Los Alamos National Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 1962.
  5. 김종현 et al., "안정적이고 이방성한 빙결 모델링을 위한 암시적 비압축성 유체와 얼음 입자간의 상호작용 기법," Journal of the Korea Computer Graphics Society, vol. 26, no. 5, pp. 1-13, 2020.
  6. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle, "A material point method for snow simulation," ACM Transactions on Graphics (TOG), vol. 32, no. 4, pp. 1-10, 2013.
  7. W. T. Solowski, M. Berzins, W. M. Coombs, J. E. Guilkey, M. Moller, Q. A. Tran, T. Adibaskoro, S. Seyedan, R. Tielen, and K. Soga, "Material point method: Overview and challenges ahead," Advances in Applied Mechanics, vol. 54, pp. 113-204, 2021. https://doi.org/10.1016/bs.aams.2020.12.002
  8. O. C. Zienkiewicz, R. L. Taylor, R. L. Taylor, and R. L. Taylor, The finite element method: solid mechanics. Butterworth-heinemann, 2000, vol. 2.
  9. G. D. Smith, G. D. Smith, and G. D. S. Smith, Numerical solution of partial differential equations: finite difference methods. Oxford university press, 1985.
  10. Y. Zhu and R. Bridson, "Animating sand as a fluid," ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 965-972, 2005. https://doi.org/10.1145/1073204.1073298
  11. D. Sulsky, Z. Chen, and H. L. Schreyer, "A particle method for history-dependent materials," Computer methods in applied mechanics and engineering, vol. 118, no. 1-2, pp. 179-196, 1994. https://doi.org/10.1016/0045-7825(94)90112-0
  12. G. Kl'ar, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran, "Drucker-prager elastoplasticity for sand animation," ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1-12, 2016.
  13. Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun, "Continuum foam: A material point method for shear-dependent flows," ACM Transactions on Graphics (TOG), vol. 34, no. 5, pp. 1-20, 2015.
  14. C. Jiang, T. Gast, and J. Teran, "Anisotropic elastoplasticity for cloth, knit and hair frictional contact," ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1-14, 2017.
  15. Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran, "A material point method for thin shells with frictional contact," ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1-15, 2018.
  16. J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. Jiang, "Cd-mpm: continuum damage material point methods for dynamic fracture animation," ACM Transactions on Graphics (TOG), vol. 38, no. 4, pp. 1-15, 2019.
  17. W. Joshuah, C. Yunuo, L. Minchen, F. Yu, Q. Ziyin, L. Jiecong, C. Meggie, and J. Chenfanfu, "Anisompm: Animating anisotropic damage mechanics," ACM Transactions on Graphics (TOG), vol. 39, no. 4, pp. 37-1, 2020.
  18. A. Griffith and J. J. Gilman, "The phenomena of rupture and flow in solids," Transactions of the ASM, vol. 61, pp. 855-906, 1968.
  19. L. D. Landau, The classical theory of fields. Elsevier, 2013, vol. 2.
  20. Y. Fei, Q. Guo, R. Wu, L. Huang, and M. Gao, "Revisiting integration in the material point method: a scheme for easier separation and less dissipation," ACM Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1-16, 2021.
  21. C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin, "The affine particle-in-cell method," ACM Transactions on Graphics (TOG), vol. 34, no. 4, pp. 1-10, 2015.
  22. K.-H. Kim, J. Lee, C.-H. Kim, and J.-H. Kim, "Visual simulation of turbulent foams by incorporating the angular momentum of foam particles into the projective framework," Applied Sciences, vol. 12, no. 1, p. 133, 2021. https://doi.org/10.3390/app12010133
  23. A. Hoger and D. E. Carlson, "Determination of the stretch and rotation in the polar decomposition of the deformation gradient," Quarterly of applied mathematics, vol. 42, no. 1, pp. 113-117, 1984. https://doi.org/10.1090/qam/736511
  24. P. F. Pai, A. N. Palazotto, and J. M. Greer Jr, "Polar decomposition and appropriate strains and stresses for nonlinear structural analyses," Computers & structures, vol. 66, no. 6, pp. 823-840, 1998. https://doi.org/10.1016/S0045-7949(98)00004-2
  25. Y. Hu, "Taichi: An open-source computer graphics library," arXiv preprint arXiv:1804.09293, 2018.
  26. T. Belytschko and M. Tabbara, "Dynamic fracture using element-free galerkin methods," International Journal for Numerical Methods in Engineering, vol. 39, no. 6, pp. 923-938, 1996. https://doi.org/10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
  27. T. Belytschko, Y. Y. Lu, and L. Gu, "Element-free galerkin methods," International journal for numerical methods in engineering, vol. 37, no. 2, pp. 229-256, 1994. https://doi.org/10.1002/nme.1620370205
  28. Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang, "A moving least squares material point method with displacement discontinuity and two-way rigid body coupling," ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1-14, 2018.
  29. T. Hadrich, M. Makowski,W. Palubicki, D. T. Banuti, S. Pirk, and D. L. Michels, "Stormscapes: simulating cloud dynamics in the now," ACM Transactions on Graphics (TOG), vol. 39, no. 6, pp. 1-16, 2020.
  30. 민혜정,김영준, et al., "Gpu가속을 이용한 점집합 렌더링을 위한 전역조명기법," Journal of the Korea Computer Graphics Society, vol. 26, no. 1, pp. 7-15, 2020. https://doi.org/10.15701/kcgs.2020.26.1.7
  31. D. Sulsky, S.-J. Zhou, and H. L. Schreyer, "Application of a particle-in-cell method to solid mechanics," Computer physics communications, vol. 87, no. 1-2, pp. 236-252, 1995. https://doi.org/10.1016/0010-4655(94)00170-7