DOI QR코드

DOI QR Code

열성장을 통해 형성된 산화구리의 광전기화학적 특성

Photoelectrochemical property of thermal copper oxide thin films

  • 최용선 (인하대학교 화학.화학공학융합학과) ;
  • 유정은 (인하대학교 화학.화학공학융합학과) ;
  • 이기영 (인하대학교 화학.화학공학융합학과)
  • Choi, Yongseon (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Yoo, JeongEun (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Lee, Kiyoung (Department of Chemistry and Chemical Engineering, Inha University)
  • 투고 : 2022.08.19
  • 심사 : 2022.08.23
  • 발행 : 2022.08.31

초록

In the present work, copper oxide thin films were formed by heat-treatment method with different temperatures and atmosphere, e.g., at 200 ~ 400 ℃; in air and Ar atmosphere. The morphological, electrical and optical properties of the thermally fabricated Cu oxide films were analyzed by SEM, XRD, and UV-VIS spectrometer. Thereafter, photoelectrochemical properties of the thermal copper oxide films were analyzed under solar light (AM 1.5, 100 mW/cm2). Conclusively, the highest photocurrent was obtained with Cu2O formed under the optimum annealing condition at 300 ℃ in air atmosphere. In addition, EIS results of Cu oxide formed in air atmosphere showed relatively low resistance and long electron life-time compared with Cu Oxide fabricated in Ar atmosphere at the same temperature. This is because heat-treatment in Ar atmosphere could not form Cu2O due to lack of oxygen, and thermally formed CuO at high temperature suppressed stability and conductivity of the Cu oxide.

키워드

과제정보

본 연구는 2021년 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제입니다. (No. 2021202080023C)

참고문헌

  1. F. F. Abdi, R. van de Krol, Nature and light dependence of bulk recombination in co-pi catalyzed BiVO4 photoanodes, J. Phys. Chem. C, 116 (2012) 9398-9404. https://doi.org/10.1021/jp3007552
  2. J. D. Holladay, J. Hu, D. L. King, Y. Wang, An overview of hydrogen production technologies, Catal. Today, 139 (2009) 244-260. https://doi.org/10.1016/j.cattod.2008.08.039
  3. S. Damyanova, B. Pawelec, K. Arishtirova, J. L. G. Fierro, Ni-based catalysts for reforming of methane with CO2, Int. J. Hydrog. Energy, 37 (2012) 15966-15975. https://doi.org/10.1016/j.ijhydene.2012.08.056
  4. L. R. Nagappagari, S. S. Patil, J. Lee, E. Park, Y. T. Yu, K. Lee, Enhanced photoelectrochemical activity using NiCo2S4 / spaced TiO2 nanorod heterojunction, Ceram. Int., 48 (2022) 920-930. https://doi.org/10.1016/j.ceramint.2021.09.176
  5. M. Kim, N. Shin, J. Lee, K. Lee, Y. T. Yu, J. Choi, Photoelectrochemical water oxidation in anodic TiO2 nanotubes array: Importance of mass transfer, Electrochem. Commun., 132 (2021) 107133.
  6. E. Park, S. S. Patil, H. Lee, V. S. Kumbhar, K. Lee, Photoelectrochemical H2 evolution on WO3/BiVO4 enable by single-crystalline TiO2 overlayer modulations, Nanoscale, 40 (2021) 16932-16941.
  7. L. R. Nagappagari, J. Lee, H. Lee, B. Jeong, K. Lee, Energy and environmental applications of Sn4+/Ti4+ doped α-Fe2O3@Cu2O/CuO photoanode under optimized photoelectrochemical conditions, Environ. Pollut., 271 (2021) 116318.
  8. Y. Choi, H. Lee, V. S. Kumbhar, Y. Choi, J. Kim, K. Lee, Enhancement of photoelectrochemical properties with α-Fe2O3 on surface modified FTO substrates, Ceram. Int., 12 (2020) 20012-20019.
  9. V. S. Kumbhar, H. Lee, J. Lee, K. Lee, Interfacial growth of the optimal BiVO4 nanoparticles onto self-assembled WO3 nanoplates for efficient photoelectrochemical water splitting, J. Colloid Interface Sci., 557 (2019) 478-487. https://doi.org/10.1016/j.jcis.2019.09.037
  10. C. Cao, X. Xie, Y. Zeng, S. Shi, G. Wang, L. Yang, C. Wang, S. Lin, Highly efficient and stable p-type ZnO nanowires with piezotronic effect for photoelectrochemical water splitting, Nano Energy, 61 (2019) 550-558. https://doi.org/10.1016/j.nanoen.2019.04.098
  11. H. Qi, J. Wolfe, D. Fichou, Z. Chen, Cu2O photocathode for low bias photoelectrochemical water splitting enabled by NiFe-layered double hydroxide co-catalyst, Sci. Rep., 6 (2016) 30882.
  12. C. Li, J. He, Y. Xiao, Y. Li, J. J. Delaunay, Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting, Energy Environ. Sci., 13 (2020) 3269-3306. https://doi.org/10.1039/D0EE02397C
  13. M. Balik, V. Bulut, I. Y. Erdogan, Optical, structural and phase transition properties of Cu2O, CuO and Cu2O/CuO: Their photoelectrochemical sensor applications, Int. J. Hydrog., 44 (2019) 18744-18755. https://doi.org/10.1016/j.ijhydene.2018.08.159
  14. J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, S. Gime'nez, Electron lifetime in dye-sensitized solar cells: Theory and interpretation of measurements, J. Phys. Chem. C, 113 (2009) 17278-17290. https://doi.org/10.1021/jp9037649
  15. H. Derin, K. Kantarli, Optical characterization of thin thermal oxide films on copper by ellipsometry, Appl. Phys. A, 75 (2002) 391-395. https://doi.org/10.1007/s003390100989
  16. R. Liu, W. D. Yang, L. S. Qiang, H. Y. Liu, Conveniently fabricated heterojunction ZnO/TiO2 electrodes using TiO2 nanotube arrays for dye-sensitized solar cells, J. Power Sources, 220 (2012) 153-159. https://doi.org/10.1016/j.jpowsour.2012.07.097
  17. H. Park, W. Kim, H. Jeong, J. Lee, H. Kim, W. Choi, Fabrication of dye-sensitized solar cells by transplanting highly ordered TiO2 nanotube arrays. Sol. Energy Mater. Sol. Cells, 95 (2011) 184-189. https://doi.org/10.1016/j.solmat.2010.02.017