DOI QR코드

DOI QR Code

Characteristics of Measurement Errors due to Reflective Sheet Targets - Surveying for Sejong VLBI IVP Estimation

반사 타겟의 관측 오차 특성 분석 - 세종 VLBI IVP 결합 측량

  • Hong, Chang-Ki (Dept. of Geoinformatics Engineering, Kyungil University) ;
  • Bae, Tae-Suk (Dept. of Geoinformatics Engineering, Sejong University)
  • Received : 2022.08.01
  • Accepted : 2022.08.16
  • Published : 2022.08.31

Abstract

Determination of VLBI IVP (Very Long Baseline Interferometry Invariant Point) position with high accuracy is required to compute local tie vectors between the space geodetic techniques. In general, reflective targets are attached on VLBI antenna and slant distances, horizontal and vertical angles are measured from the pillars. Then, adjustment computation is performed by using the mathematical model which connects measurements and unknown parameters. This indicates that the accuracy of the estimated solutions is affected by the accuracy of the measurements. One of issues in local tie surveying, however, is that the reflective targets are not in favorable condition, that is, the reflective sheet target cannot be perfectly aligned to the instrument perpendicularly. Deviation from the line of sight of an instrument may cause different type of measurement errors. This inherent limitation may lead to incorrect stochastic modeling for the measurements in adjustment computation procedures. In this study, error characteristics by measurement types and pillars are analyzed, respectively. The analysis on the studentized residuals is performed after adjustment computation. The normality of the residuals is tested and then equal variance test between the measurement types are performed. The results show that there are differences in variance according to the measurement types. Differences in variance between distances and angle measurements are observed when F-test is performed for the measurements from each pillar. Therefore, more detailed stochastic modeling is required for optimal solutions, especially in local tie survey.

우주 측지 기술 사이의 상대적인 위치 관계를 설명하는 벡터를 결정하기 위해서는 VLBI IVP (Very Long Baseline Interferometry Invariant Point)의 위치를 정밀하게 계산하여야 한다. 이를 위해 일반적으로 VLBI 안테나에 반사 타겟을 부착한 후 필라들로부터 경사 거리, 수평각, 수직각을 관측한다. 그 다음 단계에서는 관측값과 미지수를 연결하는 수학 모델을 이용하여 조정 계산을 수행하게 된다. 따라서 계산된 미지수는 관측값의 정밀도에 영향을 받게 된다. 이때 특히 문제가 되는 것은 반사 타켓이 일반적인 측량 정밀도를 확보하기 어려운 곳에 위치하고 있다는 점이다. 즉, 반사 타겟의 방향을 조정하여 측량 기기에 정확하게 맞출 수 없다는 것이다. 따라서 이러한 부분은 관측 오차에 또 다른 형태로 나타날 것이며 조정 계산 시 오차 모델링에 오류를 발생시킬 수도 있다. 본 연구에서는 조정 계산 후 계산된 잔차의 특성에 대한 분석을 수행하였다. 먼저 관측 타입별 통계 분석을 통해 정규성을 검정하였으며 분산에 차이가 있는 지에 대한 검정도 실시하였다. 관측 타입별로 등분산 검정을 한 경우 분산이 서로 다른 것으로 나타났다. 각 필라에 대해 관측 타입별 등분산 검정을 했을 때 경사 거리와 수평 및 수직각 사이에는 분산에 차이가 있는 것으로 나타났다. 따라서 결합 측량으로부터 최적의 결과를 얻기 위해서는 관측 오차에 대해 보다 세분화된 모델링이 필요한 것으로 나타났다.

Keywords

Acknowledgement

본 논문은 해양수산부 재원으로 국가연구개발사업인 "지상기반 센티미터급 해양 정밀 PNT 기술개발"에 의해 수행되었습니다(1525012253). 본 연구에 사용된 데이터는 국토지리정보원(NGII)에서 제공하였으며 이에 감사합니다.

References

  1. Amiri-Simkooei, A.R., Zangeneh-Nejad, F., and Asgari, A. (2013), Least-squares variance component estimation applied to GPS geometry-based observation model, Journal of Surveying Engineering, Vol. 139, pp. 176-187. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000107
  2. Bae, T.S. (2022), Adjustment Computations, Haum, Republic of Korea (in Korean)
  3. Dawson, J., Sarti, P., Johnston, G.M., and Vittuari, L. (2007), Indirect approach to invariant point determination for SLR and VLBI systems: an assessment, Journal of Geodesy, Vol. 81, No. 6-8, pp. 433-441. https://doi.org/10.1007/s00190-006-0125-x
  4. Ghilani, C.D. (2010), Adjustment Computations: Spatial Data Analysis, 4th Edition, John Wiley & Sons, New Jersey.
  5. Hair, J., Black, W.C., Babin, B.J., and Anderson, R.E. (2010), Multivariate data analysis, 7th Edition, Upper Saddle River, New Jersey: Pearson Educational International.
  6. Hong, C.K., Bae, T.S., and Lee, S.O. (2020), Estimation of Sejong VLBI IVP Point Using Coordinates of Reflective Targets with Their Measurement Errors, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 38, No. 6, pp. 717-723. https://doi.org/10.7848/ksgpc.2020.38.6.717
  7. Johnston, G., Dawson, J., and Naebkhil, S. (2004), The 2003 Mount Stromlo Local Tie Survey, Record 2004/20, Geoscience Australia, Canberra, Australia, pp. 8-10.
  8. NGII (2019), Enhancement of National Geodetic Network, National Geographic Information Institute, Suwon, Korea, 229p. (in Korean)
  9. NGII (2020), Standardization of Local Tie Survey Procedures, National Geographic Information Institute, Suwon, Korea, 175p. (in Korean)
  10. Qian, K., Wang, J., and Hu, B. (2016), A posteriori estimation of stochastic model for multi-sensor integrated inertial kinematic positioning and navigation on basis of variance component estimation, The Journal of Global Positioning Systems, Vol. 14, No. 5. https://doi.org/10.1186/s41445-016-0005-5
  11. Sarti, P., Sillard, P., and Vittuari, L. (2004), Surveying co-located space-geodetic instruments for ITRF computation, Journal of Geodesy, Vol. 78, pp. 210-222. https://doi.org/10.1007/s00190-004-0387-0
  12. Schaffrin, B. (2003), Advanced Adjustment Computations, Lecture Notes (GS762), Dept. of Geodetic Science, Ohio State University, Columbus, Ohio, USA.
  13. Snow, K.B. (2002), Applications of Parameter Estimation and Hypothesis Testing to GPS Network Adjustments, Report No. 465, Dept. of Geodetic Science, The Ohio State University, Columbus, Ohio, USA.
  14. Teunissen, P.J.G. and Amiri-simkooei, A.R. (2008), Least-squares variance component estimation, Journal of Geodesy, Vol. 82, pp. 65-82. https://doi.org/10.1007/s00190-007-0157-x
  15. Trimble (2010), Trimble S8 Total Station Datasheet, https://forms.trimble.com/globalTRLTAB.aspx?nav=Collection-51903 (last day accessed: 12 August 2022).
  16. Woods, A.R. (2007), The 2007 Tidbinbilla Local Tie Survey, Geoscience Australia Record, 2007/XX, 23p.