• Title/Summary/Keyword: VLBI IVP

Search Result 4, Processing Time 0.014 seconds

Estimation of Sejong VLBI IVP Point Using Coordinates of Reflective Targets with Their Measurement Errors (반사타겟 좌표 및 오차정보를 이용한 세종 VLBI IVP 위치계산)

  • Hong, Chang-Ki;Bae, Tae-Suk;Yi, Sangoh
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.717-723
    • /
    • 2020
  • Determination of local tie vectors between the space geodetic techniques such as VLBI (Very Long Baseline Interferometer), SLR (Satellite Laser Ranging), DORIS (Doppler Orbit determination and Radiopositioning Integrated on Satellite), GNSS (Global Navigation Satellite System) is essential for combination of ITRF (International Terrestrial Reference Frame). Therefore, it is required to compute IVP (Invariant Point) position of each space geodetic technique with high accuracy. In this study, we have computed Sejong VLBI IVP position by using updated mathematical model for adjustment computation so that the improvement on efficiency and reliability in computation are obtained. The measurements used for this study are the coordinates of reflective targets on the VLBI antenna and their accuracies are set to 1.5 mm for each component. The results show that the position of VLBI IVP together with its standard deviation is successfully estimated when they are compared with those of the results from previous study. However, it is notable that additional terrestrial surveying should be performed so that realistic measurement errors are incorporated in the adjustment computation process.

Characteristics of Measurement Errors due to Reflective Sheet Targets - Surveying for Sejong VLBI IVP Estimation (반사 타겟의 관측 오차 특성 분석 - 세종 VLBI IVP 결합 측량)

  • Hong, Chang-Ki;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.325-332
    • /
    • 2022
  • Determination of VLBI IVP (Very Long Baseline Interferometry Invariant Point) position with high accuracy is required to compute local tie vectors between the space geodetic techniques. In general, reflective targets are attached on VLBI antenna and slant distances, horizontal and vertical angles are measured from the pillars. Then, adjustment computation is performed by using the mathematical model which connects measurements and unknown parameters. This indicates that the accuracy of the estimated solutions is affected by the accuracy of the measurements. One of issues in local tie surveying, however, is that the reflective targets are not in favorable condition, that is, the reflective sheet target cannot be perfectly aligned to the instrument perpendicularly. Deviation from the line of sight of an instrument may cause different type of measurement errors. This inherent limitation may lead to incorrect stochastic modeling for the measurements in adjustment computation procedures. In this study, error characteristics by measurement types and pillars are analyzed, respectively. The analysis on the studentized residuals is performed after adjustment computation. The normality of the residuals is tested and then equal variance test between the measurement types are performed. The results show that there are differences in variance according to the measurement types. Differences in variance between distances and angle measurements are observed when F-test is performed for the measurements from each pillar. Therefore, more detailed stochastic modeling is required for optimal solutions, especially in local tie survey.

DETERMINATION OF THE INVARIANT POINT OF THE KOREAN VLBI NETWORK RADIO TELESCOPES: FIRST RESULTS AT THE ULSAN AND TAMNA OBSERVATORIES

  • Yoo, Sung-Moon;Jung, Taehyun;Lee, Sung-Mo;Yoon, Ha Su;Park, Han-Earl;Chung, Jong-Kyun;Roh, Kyoung-Min;Wi, Seog Oh;Cho, Jungho;Byun, Do-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.5
    • /
    • pp.143-153
    • /
    • 2018
  • We present the first results of the invariant point (IVP) coordinates of the KVN Ulsan and Tamna radio telescopes. To determine the IVP coordinates in the geocentric frame (ITRF2014), a coordinate transformation method from the local frame, in which it is possible to survey using the optical instrument, to the geocentric frame was adopted. The least-square circles are fitted in three dimensions using the Gauss-Newton method to determine the azimuth and elevation axes in the local frame. The IVP in the local frame is defined as the mean value of the intersection points of the azimuth axis and the orthogonal vector between the azimuth and elevation axes. The geocentric coordinates of the IVP are determined by obtaining the seven transformation parameters between the local frame and the east-north-up (ENU) geodetic frame. The axis-offset between the azimuth and elevation axes is also estimated. To validate the results, the variation of coordinates of the GNSS station installed at KVN Ulsan was compared to the movement of the IVP coordinates over 9 months, showing good agreement in both magnitude and direction. This result will provide an important basis for geodetic and astrometric applications.

TLS (Total Least-Squares) within Gauss-Helmert Model: 3D Planar Fitting and Helmert Transformation of Geodetic Reference Frames (가우스-헬머트 모델 전최소제곱: 평면방정식과 측지좌표계 변환)

  • Bae, Tae-Suk;Hong, Chang-Ki;Lim, Soo-Hyeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2022
  • The conventional LESS (LEast-Squares Solution) is calculated under the assumption that there is no errors in independent variables. However, the coordinates of a point, either from traditional ground surveying such as slant distances, horizontal and/or vertical angles, or GNSS (Global Navigation Satellite System) positioning, cannot be determined independently (and the components are correlated each other). Therefore, the TLS (Total Least Squares) adjustment should be applied for all applications related to the coordinates. Many approaches were suggested in order to solve this problem, resulting in equivalent solutions except some restrictions. In this study, we calculated the normal vector of the 3D plane determined by the trace of the VLBI targets based on TLS within GHM (Gauss-Helmert Model). Another numerical test was conducted for the estimation of the Helmert transformation parameters. Since the errors in the horizontal components are very small compared to the radius of the circle, the final estimates are almost identical. However, the estimated variance components are significantly reduced as well as show a different characteristic depending on the target location. The Helmert transformation parameters are estimated more precisely compared to the conventional LESS case. Furthermore, the residuals can be predicted on both reference frames with much smaller magnitude (in absolute sense).