Acknowledgement
The author thanks for the support of the Institute for Research and Development, Phranakhon Rajabhat University.
References
- A. Abkar and M. Eslamian, Fixed Point Theorems for Suzuki Generalized Nonexpansive Multivalued Mappings in Banach Space, Fixed Point Theory Appl., (2010); doi:10.1155/2010/457935.
- N. Akkasriworn and K. Sokhuma, Convergence theorem for a pair of asymptotically and multivalued nonexpansive mapping, Commun. Korean Math. Soc., 30 (2015), 177-189. https://doi.org/10.4134/CKMS.2015.30.3.177
- N. Akkasriworn, K. Sokhuma and K. Chuikamwong, Ishikawa iterative process for a pair of Suzuki generalized nonexpansive single valued and multivalued mappings in Banach spaces, Int. J. Math. Anal., 19 (2012), 923-932.
- M. Asadi, Sh. Ghasemzadehdibagi, S. Haghayeghi and N. Ahmad, Fixed point theorems for (α, p)-nonexpansive mappings in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 26(5) (2021), 1045-1057.
- M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999.
- F. Bruhat and J. Tits, Groupes reductifs sur un corps local I. Donnees radicielles valuees, Inst. Hautes Etudes Sci. Publ. Math., 41 (1972), 5-251. https://doi.org/10.1007/BF02715544
- S. Dhompongsa, W.A. Kirk and B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., 8 (2007), 35-45.
- S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal., 65 (2006), 762-772. https://doi.org/10.1016/j.na.2005.09.044
- R. Espinola, P. Lorenzo and A. Nicolae, Fixed points, selections and common fixed points for nonexpansive-type Mappings, J. Math. Anal. Appl., 382 (2011), 503-515. https://doi.org/10.1016/j.jmaa.2010.06.039
- J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R.L. Gupta, Demiclosedness principle and convergence theorems for Lipschitzian type nonself-mappings in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 23(1) (2018), 73-95.
- K.S. Kim, Existence theorem of a fixed point for asymptotically nonexpansive nonself mapping in CAT(0) spaces, Nonlinear Funct. Anal. Appl., 25(2) (2020), 355-362.
- W.A. Kirk, Geodesic geometry and fixed point theory. In: Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003). Colecc. Abierta, vol.64, Univ. Sevilla Secr. Publ., Seville, 6 (2003), 195-225.
- W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689-3696. https://doi.org/10.1016/j.na.2007.04.011
- T. Laokul and B. Panyanak, Approximating Fixed Points of Nonexpansive Mappings in CAT(0) Spaces, Int. J. Math. Anal., 3 (2009), 1305-1315.
- W. Laowang and B. Panyanak, Approximating fixed points of nonexpansive nonself mappings in CAT(0) spaces, Fixed Point Theory Appl., (2010); doi:10.1155/2010/367274.
- T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976), 179-182. https://doi.org/10.1090/S0002-9939-1976-0423139-X
- B. Nanjaras, B. Panyanaka and W. Phuengrattana, Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces, Nonlinear Analysis: Hybrid Syst., 4 (2010), 25-31. https://doi.org/10.1016/j.nahs.2009.07.003
- G.A. Okeke, M. Abbas and M. de la Sen, Fixed point theorems for convex minimization problems in complex valued CAT(0) spaces, Nonlinear Funct. Anal. Appl., 25(4) (2020), 671-696.
- K. Sokhuma, ∆-Convergence Theorems for a Pair of Single valued and Multivalued Nonexpansive Mappings in CAT(0) spaces, J. Math. Anal., 4 (2013), 23-31.
- K. Sokhuma, An Ishikawa Iteration Scheme for two Nonlinear Mappings in CAT(0) Spaces, Kyungpook Math. J., 59 (2019), 665-678.
- K. Sokhuma and A. Kaewkhao, Ishikawa Iterative Process for a Pair of Single-valued and Multivalued Nonexpansive Mappings in Banach Spaces, Fixed Point Theory Appl., (2010); doi:10.1155/2010/618767.
- T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mapping, J. Math. Anal. Appl., 340 (2008), 1088-1095. https://doi.org/10.1016/j.jmaa.2007.09.023