Acknowledgement
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2021S1A5A2A03065436).
References
- M. Winter, R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chemical Reviews, 104, 4245 (2004). Doi: https://doi.org/10.1021/cr020730k
- M. Li, J. Lu, Z. Chen, K. Amine, 30 Years of Lithium-Ion Batteries, Advanced Materials, 30, 1800561 (2018). Doi: https://doi.org/10.1002/adma.201800561
- F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chemical Society Reviews, 49, 1569 (2020). Doi: https://doi.org/10.1039/C7CS00863E
- H. Zhang, H. Zhao, M. A. Khan, W. Zou, J. Xu, L. Zhang, J. Zhang, Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries, Journal of Materials Chemistry A, 6, 20564 (2018). Doi: https://doi.org/10.1039/C8TA05336G
- S. J. Hong, S. S. Kim, and S. Nam, Using Coffee-Derived Hard Carbon as a Cost-Effective and Eco-Friendly Anode Material for Li-Ion Batteries, Corrosion Science and Technology, 20, 15 (2021). Doi: https://doi.org/10.14773/CST.2021.20.1.15
- M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Insertion Electrode Materials for Rechargeable Lithium Batteries, Advanced Materials, 10, 725 (1998). Doi: https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
- H. Zhang, Y. Yang, D. Ren, L. Wang, X. He, Graphite as anode materials: Fundamental mechanism, recent progress and advances, Energy Storage Materials, 36, 147 (2021). Doi: https://doi.org/10.1016/j.ensm.2020.12.027
- K. Kim, H.-S. Kim, H. Seo, and J.-H. Kim, Electrochemical and Thermal Property Enhancement of Natural Graphite Electrodes via a Phosphorus and Nitrogen Incorporating Surface Treatment, Corrosion Science and Technology, 19, 31 (2020). Doi: https://doi.org/10.14773/CST.2020.19.1.31
- M. N. Obrovac, V. L. Chevrier, Alloy Negative Electrodes for Li-Ion Batteries, Chemical Reviews, 114, 11444 (2014). Doi: https://doi.org/10.1021/cr500207g
- C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chemical Society Reviews, 39, 3115 (2010). Doi: https://doi.org/10.1039/B919877F
- H. Wang, S. Chen, C. Fu, Y. Ding, G. Liu, Y. Cao, Z. Chen, Recent Advances in Conversion-Type Electrode Materials for Post Lithium-Ion Batteries, ACS Materials Letters, 3, 956 (2021). Doi: https://doi.org/10.1021/acsmaterialslett.1c00043
- Y. Yang, H. Seo, J.-H. Kim, Electrochemical Characteristics of Synthesized Nb2O5-Li3VO4 Composites as Li Storage Materials, Corrosion Science and Technology, 20, 183 (2021). Doi: https://doi.org/10.14773/cst.2021.20.4.183
- R. Sahoo, M. Singh, T. N. Rao, A Review on the Current Progress and Challenges of 2D Layered Transition Metal Dichalcogenides as Li/Na-ion Battery Anodes, Chem. Electro. Chem., 8, 2358 (2021). Doi: https://doi.org/10.1002/celc.202100197
- T. Zhao, H. Shu, Z. Shen, H. Hu, J. Wang, X. Chen, Electrochemical Lithiation Mechanism of Two-Dimensional Transition-Metal Dichalcogenide Anode Materials: Intercalation versus Conversion Reactions, The Journal of Physical Chemistry C, 123, 2139 (2019). Doi: https://doi.org/10.1021/acs.jpcc.8b11503
- X. Zhang, Z. Lai, Q. Ma, H. Zhang, Novel structured transition metal dichalcogenide nanosheets, Chemical Society Reviews, 47, 3301 (2018). Doi: https://doi.org/10.1039/C8CS00094H
- Q. Yun, L. Li, Z. Hu, Q. Lu, B. Chen, H. Zhang, Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage, Advanced Materials, 32, 1903826 (2020). Doi: https://doi.org/10.1002/adma.201903826
- J. Zhang, C. Du, Z. Dai, W. Chen, Y. Zheng, B. Li, Y. Zong, X. Wang, J. Zhu, Q. Yan, NbS2 Nanosheets with M/Se (M = Fe, Co, Ni) Codopants for Li+ and Na+ Storage, ACS Nano, 11, 10599 (2017). Doi: https://doi.org/10.1021/acsnano.7b06133
- C. Pan, J. Kang, Q. Xie, Q. Li, W. Yang, H. Zou, S. Chen, T-Nb2O5@NbS2@C Composites Based on the Intercalation-Conversion Mechanism as an Anode Material for Li-Ion Batteries, ACS Applied Energy Materials, 4, 12365 (2021). Doi: https://doi.org/10.1021/acsaem.1c02165
- Y. Liao, K.-S. Park, P. Singh, W. Li, J. B. Goodenough, Reinvestigation of the electrochemical lithium intercalation in 2H- and 3R-NbS2, Journal of Power Sources, 245, 27 (2014). Doi: https://doi.org/10.1016/j.jpowsour.2013.06.048
- D. Gopalakrishnan, A. Lee, N. K. Thangavel, L. M. Reddy Arava, Facile synthesis of electrocatalytically active NbS2 nanoflakes for an enhanced hydrogen evolution reaction (HER), Sustainable Energy & Fuels, 2, 96 (2018). Doi: https://doi.org/10.1039/C7SE00376E
- X. Ou, X. Xiong, F. Zheng, C. Yang, Z. Lin, R. Hu, C. Jin, Y. Chen, M. Liu, In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries, Journal of Power Sources, 325, 410 (2016). Doi: https://doi.org/10.1016/j.jpowsour.2016.06.055
- Q. Hao, D. Wang, B. Zhu, S. Zeng, Z. Gao, Y. Wang, B. Li, Y. Wang, Z. Tang, K. Tang, Facile synthesis, structure and physical properties of 3R-AxNbS2 (A = Li, Na), Journal of Alloys and Compounds, 663, 225 (2016). Doi: https://doi.org/10.1016/j.jallcom.2015.12.094
- L. Ehm, S. Vogel, K. Knorr, P. Schmid-Beurmann, W. Depmeier, X-ray powder diffraction and 57Fe Mossbauer spectroscopy study on Fe0.47NbS2, Journal of Alloys and Compounds, 339, 30 (2002). Doi: https://doi.org/10.1016/S0925-8388(01)01980-6
- Z. Wang, C. Liu, G. Shi, G. Wang, H. Zhang, Q. Zhang, X. Jiang, X. Li, F. Luo, Y. Hu, K. Yi, Preparation and electrochemical properties of electrospun FeS/carbon nanofiber composites, Ionics, 26, 3051 (2020). Doi: https://doi.org/10.1007/s11581-020-03455-2
- J. E. Thomas, W. M. Skinner, R. S. t. C. Smart, A comparison of the dissolution behavior of troilite with other iron(II) sulfides; implications of structure, Geochimica et Cosmochimica Acta, 67, 831 (2003). Doi: https://doi.org/10.1016/S0016-7037(02)01146-8
- K. Izawa, S. Ida, U. Unal, T. Yamaguchi, J.-H. Kang, J.-H. Choy, Y. Matsumoto, A new approach for the synthesis of layered niobium sulfide and restacking route of NbS2 nanosheet, Journal of Solid State Chemistry, 181, 319 (2008). Doi: https://doi.org/10.1016/j.jssc.2007.12.002