DOI QR코드

DOI QR Code

Synthesis and Electrochemical Properties of FexNbS2/C Composites as an Anode Material for Li Secondary Batteries

  • Kim, Yunjung (School of Materials Science and Engineering, Kookmin University) ;
  • Kim, Jae-Hun (School of Materials Science and Engineering, Kookmin University)
  • Received : 2022.08.04
  • Accepted : 2022.08.17
  • Published : 2022.09.02

Abstract

Transition metal sulfide materials have emerged as a new anode material for Li secondary batteries owing to their high capacity and rate capability facilitated by fast Li-ion transport through the layered structure. Among these materials, niobium disulfide (NbS2) has attracted much attention with its high electrical conductivity and high theoretical capacity (683 mAh g-1). In this study, we propose a facile synthesis of FexNbS2/C composite via simple ball milling and heat treatment. The starting materials of FeS and Nb were reacted in the first milling step and transformed into an Fe-Nb-S composite. In the second milling step, activated carbon was incorporated and the sulfide was crystallized into FexNbS2 by heat treatment. The prepared materials were characterized by X-ray diffraction, electron spectroscopies, and X-ray photoelectron spectroscopy. The electrochemical test results reveal that the synthesized FexNbS2/C composite electrode demonstrates a high reversible capacity of more than 600 mAh g-1, stable cycling stability, and excellent rate performance for Li-ion battery anodes.

Keywords

Acknowledgement

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2021S1A5A2A03065436).

References

  1. M. Winter, R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chemical Reviews, 104, 4245 (2004). Doi: https://doi.org/10.1021/cr020730k
  2. M. Li, J. Lu, Z. Chen, K. Amine, 30 Years of Lithium-Ion Batteries, Advanced Materials, 30, 1800561 (2018). Doi: https://doi.org/10.1002/adma.201800561
  3. F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chemical Society Reviews, 49, 1569 (2020). Doi: https://doi.org/10.1039/C7CS00863E
  4. H. Zhang, H. Zhao, M. A. Khan, W. Zou, J. Xu, L. Zhang, J. Zhang, Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries, Journal of Materials Chemistry A, 6, 20564 (2018). Doi: https://doi.org/10.1039/C8TA05336G
  5. S. J. Hong, S. S. Kim, and S. Nam, Using Coffee-Derived Hard Carbon as a Cost-Effective and Eco-Friendly Anode Material for Li-Ion Batteries, Corrosion Science and Technology, 20, 15 (2021). Doi: https://doi.org/10.14773/CST.2021.20.1.15
  6. M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Insertion Electrode Materials for Rechargeable Lithium Batteries, Advanced Materials, 10, 725 (1998). Doi: https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
  7. H. Zhang, Y. Yang, D. Ren, L. Wang, X. He, Graphite as anode materials: Fundamental mechanism, recent progress and advances, Energy Storage Materials, 36, 147 (2021). Doi: https://doi.org/10.1016/j.ensm.2020.12.027
  8. K. Kim, H.-S. Kim, H. Seo, and J.-H. Kim, Electrochemical and Thermal Property Enhancement of Natural Graphite Electrodes via a Phosphorus and Nitrogen Incorporating Surface Treatment, Corrosion Science and Technology, 19, 31 (2020). Doi: https://doi.org/10.14773/CST.2020.19.1.31
  9. M. N. Obrovac, V. L. Chevrier, Alloy Negative Electrodes for Li-Ion Batteries, Chemical Reviews, 114, 11444 (2014). Doi: https://doi.org/10.1021/cr500207g
  10. C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chemical Society Reviews, 39, 3115 (2010). Doi: https://doi.org/10.1039/B919877F
  11. H. Wang, S. Chen, C. Fu, Y. Ding, G. Liu, Y. Cao, Z. Chen, Recent Advances in Conversion-Type Electrode Materials for Post Lithium-Ion Batteries, ACS Materials Letters, 3, 956 (2021). Doi: https://doi.org/10.1021/acsmaterialslett.1c00043
  12. Y. Yang, H. Seo, J.-H. Kim, Electrochemical Characteristics of Synthesized Nb2O5-Li3VO4 Composites as Li Storage Materials, Corrosion Science and Technology, 20, 183 (2021). Doi: https://doi.org/10.14773/cst.2021.20.4.183
  13. R. Sahoo, M. Singh, T. N. Rao, A Review on the Current Progress and Challenges of 2D Layered Transition Metal Dichalcogenides as Li/Na-ion Battery Anodes, Chem. Electro. Chem., 8, 2358 (2021). Doi: https://doi.org/10.1002/celc.202100197
  14. T. Zhao, H. Shu, Z. Shen, H. Hu, J. Wang, X. Chen, Electrochemical Lithiation Mechanism of Two-Dimensional Transition-Metal Dichalcogenide Anode Materials: Intercalation versus Conversion Reactions, The Journal of Physical Chemistry C, 123, 2139 (2019). Doi: https://doi.org/10.1021/acs.jpcc.8b11503
  15. X. Zhang, Z. Lai, Q. Ma, H. Zhang, Novel structured transition metal dichalcogenide nanosheets, Chemical Society Reviews, 47, 3301 (2018). Doi: https://doi.org/10.1039/C8CS00094H
  16. Q. Yun, L. Li, Z. Hu, Q. Lu, B. Chen, H. Zhang, Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage, Advanced Materials, 32, 1903826 (2020). Doi: https://doi.org/10.1002/adma.201903826
  17. J. Zhang, C. Du, Z. Dai, W. Chen, Y. Zheng, B. Li, Y. Zong, X. Wang, J. Zhu, Q. Yan, NbS2 Nanosheets with M/Se (M = Fe, Co, Ni) Codopants for Li+ and Na+ Storage, ACS Nano, 11, 10599 (2017). Doi: https://doi.org/10.1021/acsnano.7b06133
  18. C. Pan, J. Kang, Q. Xie, Q. Li, W. Yang, H. Zou, S. Chen, T-Nb2O5@NbS2@C Composites Based on the Intercalation-Conversion Mechanism as an Anode Material for Li-Ion Batteries, ACS Applied Energy Materials, 4, 12365 (2021). Doi: https://doi.org/10.1021/acsaem.1c02165
  19. Y. Liao, K.-S. Park, P. Singh, W. Li, J. B. Goodenough, Reinvestigation of the electrochemical lithium intercalation in 2H- and 3R-NbS2, Journal of Power Sources, 245, 27 (2014). Doi: https://doi.org/10.1016/j.jpowsour.2013.06.048
  20. D. Gopalakrishnan, A. Lee, N. K. Thangavel, L. M. Reddy Arava, Facile synthesis of electrocatalytically active NbS2 nanoflakes for an enhanced hydrogen evolution reaction (HER), Sustainable Energy & Fuels, 2, 96 (2018). Doi: https://doi.org/10.1039/C7SE00376E
  21. X. Ou, X. Xiong, F. Zheng, C. Yang, Z. Lin, R. Hu, C. Jin, Y. Chen, M. Liu, In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries, Journal of Power Sources, 325, 410 (2016). Doi: https://doi.org/10.1016/j.jpowsour.2016.06.055
  22. Q. Hao, D. Wang, B. Zhu, S. Zeng, Z. Gao, Y. Wang, B. Li, Y. Wang, Z. Tang, K. Tang, Facile synthesis, structure and physical properties of 3R-AxNbS2 (A = Li, Na), Journal of Alloys and Compounds, 663, 225 (2016). Doi: https://doi.org/10.1016/j.jallcom.2015.12.094
  23. L. Ehm, S. Vogel, K. Knorr, P. Schmid-Beurmann, W. Depmeier, X-ray powder diffraction and 57Fe Mossbauer spectroscopy study on Fe0.47NbS2, Journal of Alloys and Compounds, 339, 30 (2002). Doi: https://doi.org/10.1016/S0925-8388(01)01980-6
  24. Z. Wang, C. Liu, G. Shi, G. Wang, H. Zhang, Q. Zhang, X. Jiang, X. Li, F. Luo, Y. Hu, K. Yi, Preparation and electrochemical properties of electrospun FeS/carbon nanofiber composites, Ionics, 26, 3051 (2020). Doi: https://doi.org/10.1007/s11581-020-03455-2
  25. J. E. Thomas, W. M. Skinner, R. S. t. C. Smart, A comparison of the dissolution behavior of troilite with other iron(II) sulfides; implications of structure, Geochimica et Cosmochimica Acta, 67, 831 (2003). Doi: https://doi.org/10.1016/S0016-7037(02)01146-8
  26. K. Izawa, S. Ida, U. Unal, T. Yamaguchi, J.-H. Kang, J.-H. Choy, Y. Matsumoto, A new approach for the synthesis of layered niobium sulfide and restacking route of NbS2 nanosheet, Journal of Solid State Chemistry, 181, 319 (2008). Doi: https://doi.org/10.1016/j.jssc.2007.12.002