DOI QR코드

DOI QR Code

Direct Microwave Sintering of Poorly Coupled Ceramics in Electrochemical Devices

  • Amiri, Taghi (Department of Chemical and Materials Engineering, University of Alberta) ;
  • Etsell, Thomas H. (Department of Chemical and Materials Engineering, University of Alberta) ;
  • Sarkar, Partha (Department of Chemical and Materials Engineering, University of Alberta)
  • 투고 : 2022.04.14
  • 심사 : 2022.05.16
  • 발행 : 2022.08.28

초록

The use of microwaves as the energy source for synthesis and sintering of ceramics offers substantial advantages compared to conventional gas-fired and electric resistance furnaces. Benefits include much shorter processing times and reaching the sintering temperature more quickly, resulting in superior final product quality. Most oxide ceramics poorly interact with microwave irradiation at low temperatures; thus, a more complex setup including a susceptor is needed, which makes the whole process very complicated. This investigation pursued a new approach, which enabled us to use microwave irradiation directly in poorly coupled oxides. In many solid-state electrochemical devices, the support is either metal or can be reduced to metal. Metal powders in the support can act as an internal susceptor and heat the entire cell. Then sufficient interaction of microwave irradiation and ceramic material can occur as the sample temperature increases. This microwave heating and exothermic reaction of oxidation of the support can sinter the ceramic very efficiently without any external susceptor. In this study, yttria stabilized zirconia (YSZ) and a Ni-YSZ cermet support were used as an example. The cermet was used as the support, and a YSZ electrolyte was coated and sintered directly using microwave irradiation without the use of any susceptor. The results were compared to a similar cell prepared using a conventional electric furnace. The leakage test and full cell power measurement results revealed a fully leak-free electrolyte. Scanning electron microscopy and density measurements show that microwave sintered samples have lower open porosity in the electrode support than conventional heat treatment. This technique offers an efficient way to directly use microwave irradiation to sinter thin film ceramics without a susceptor.

키워드

과제정보

Special thanks to Future Energy Systems and NSERC for funding this project.

참고문헌

  1. Z. Huang, M. Gotoh and Y. Hirose, J. Mater. Process. Technol., 2009, 209(5), 2446-2452. https://doi.org/10.1016/j.jmatprotec.2008.05.037
  2. D. Agrawal, J. Mater. Educ., 1999, 19(4-6), 49-58.
  3. P. Colomban and J. Badot, Solid State Ion., 1993, 61(1-3), 55-62.
  4. A. G. Whittaker and D. M. P. Mingos, J. Chem. Soc., Dalton Tran., 1995, 12, 2073-2079.
  5. N. R. Council, Microwave processing of materials, National Academies Press, 1994.
  6. M. Gupta and E. W. W. Leong, Microwaves and metals, John Wiley & Sons, 2008.
  7. C. Leonelli, P. Veronesi, L. Denti, A. Gatto and L. Iuliano, J. Mater. Process. Technol., 2008, 205(1-3), 489-496. https://doi.org/10.1016/j.jmatprotec.2007.11.263
  8. S. Manivannan, A. Joseph, P. Sharma, K. J. Raju and D. Das, Ceram. Int., 2015, 41(9), 10923-10933. https://doi.org/10.1016/j.ceramint.2015.05.035
  9. A. Berteaud and J. Badot, J. Microw. Power, 1976, 11(4), 315-2320. https://doi.org/10.1080/00222739.1976.11689007
  10. B. Wang, L. Bi and X. S. Zhao, J. Eur. Ceram. Soc., 2018, 38(16), 5620-5624. https://doi.org/10.1016/j.jeurceramsoc.2018.08.020
  11. Z. Jiao, N. Shikazono and N. Kasagi, J. Power Sources, 2010, 195(24), 8019-8027. https://doi.org/10.1016/j.jpowsour.2010.06.072
  12. B. Molero-Sanchez, E. Moran and V. Birss, ACS Omega, 2017, 2(7), 3716-3723. https://doi.org/10.1021/acsomega.7b00275
  13. D. Agrawal, Trans. Indian Ceram. Soc., 2006, 65(3), 129-144.
  14. K. Rybakov, V. Semenov, S. Egorov, A. Eremeev, I. Plotnikov and Y. V. Bykov, J. Appl. Phys., 2006, 99(2), 023506. https://doi.org/10.1063/1.2159078
  15. R. D. Blake and T. T. Meek, J. mater. sci. lett., 1986, 5(11), 1097-1098. https://doi.org/10.1007/BF01742210
  16. R. Roy, D. Agrawal, J. Cheng and S. Gedevanishvili, Nature, 1999, 399(6737), 668-670. https://doi.org/10.1038/21390
  17. M. A. Janney, C. L. Calhoun and H. D. Kimrey, J. Am. Ceram. Soc., 1992, 75(2), 341-346. https://doi.org/10.1111/j.1151-2916.1992.tb08184.x
  18. A. L. Vincent, A. R. Hanifi, M. Zazulak, J.-L. Luo, K. T. Chuang, A. R. Sanger, T. Etsell and P. Sarkar, J. Power Sources, 2013, 240, 411-416. https://doi.org/10.1016/j.jpowsour.2013.03.104
  19. S. Singh, D. Gupta, V. Jain and A. K. Sharma, Mater. Manuf. Process., 2015, 30(1), 1-29. https://doi.org/10.1080/10426914.2014.952028
  20. J. Sun, W. Wang and Q. Yue, Materials, 2016, 9(4), 231. https://doi.org/10.3390/ma9040231
  21. R. Haugsrud, Corr. Sci., 2003, 45(1), 211-235. https://doi.org/10.1016/S0010-938X(02)00085-9
  22. J. D. Katz, Annu. Rev. Mater. Sci., 1992, 22(1), 153-170. https://doi.org/10.1146/annurev.ms.22.080192.001101
  23. M. Matsuda, K. Nakamoto and M. Miyake, J. Ceram. Soc. Jpn., 2006, 114(1325), 106-109. https://doi.org/10.2109/jcersj.114.106
  24. A. Goldstein, N. Travitzky, A. Singurindy and M. Kravchik, J. Eur. Ceram. Soc., 1999, 19(12), 2067-2072. https://doi.org/10.1016/S0955-2219(99)00020-5
  25. T. Amiri, K. Singh, N. K. Sandhu, A. R. Hanifi, T. H. Etsell, J.-L. Luo, V. Thangadurai and P. Sarkar, J. Electrochem. Soc., 2018, 165(10), F764-F769. https://doi.org/10.1149/2.0331810jes
  26. R. Campana, R. I. Merino, A. Larrea, I. Villarreal and V. M. Orera, J. Power Sources, 2009, 192(1), 120-125. https://doi.org/10.1016/j.jpowsour.2008.12.107
  27. Y. C. Li, F. Xu, X. F. Hu, D. Kang, T. Q. Xiao and X. P. Wu, Acta Mater., 2014, 66, 293-301. https://doi.org/10.1016/j.actamat.2013.11.017
  28. D. Demirskyi, D. Agrawal and A. Ragulya, J. Alloys Compd., 2011, 509(5), 1790-1795. https://doi.org/10.1016/j.jallcom.2010.10.042
  29. M. Oghbaei and O. Mirzaee, J. Alloys Compd., 2010, 494(1-2), 175-189. https://doi.org/10.1016/j.jallcom.2010.01.068
  30. T. Amiri, T. H. Etsell and P. Sarkar, Mater. Technol., 2022, 1-10.