Acknowledgement
이 논문은 2022년도 정부 (과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2019-0-00533, 컴퓨터 프로세서의 구조적 보안 취약점 검증 및 공격 탐지대응). 이 성과는 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2022R1A2C1011469). 본 연구는 삼성전자의 지원 (과제번호 IO210204-08384-01)을 받아 수행된 결과임.
References
- H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, "Neural Acceleration for General-purpose Approximate Programs," in 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 449-460, 2012.
- Y. Chen, Y. Xie, L. Song, F. Chen, T. Tang, "A Survey of Accelerator Architectures for Deep Neural Networks," Engineering, Vol. 6, No. 3, pp. 264-274, 2020. https://doi.org/10.1016/j.eng.2020.01.007
- https://cloud.google.com/tpu
- A. Skillman, T. Edso, "A Technical Overview of Cortex-m55 and Ethos-u55: Arm's most Capable Processors for Endpoint ai," in 2020 IEEE Hot Chips 32 Symposium (HCS), pp. 1-20, 2020.
- J. Choquette, W. Gandhi, O. Giroux, N. Stam, R. Krashinsky, "NVIDIA A100 Tensor core GPU: Performance and Innovation," IEEE Micro, Vol. 41, No. 2, pp. 29-35, 2021.
- http://deepx.musigndm.com/product/
- https://coral.ai/products/accelerator-module
- J. W. Jang, S. Lee, D. Kim, H. Park, A. S. Ardestani, Y. Choi, C. Kim, Y. Kim, H. Yu, H. Abdel-Aziz, J. S. Park, H. Lee, D. Lee, M. W. Kim, H. Jung, H. Nam, D. Lim, S. Lee, J. H. Song, S. Kwon, J. Hassoun, S. H. Lim, C. Choi, "Sparsity-aware and Re-configurable npu Architecture for Samsung Flagship Mobile soc," in 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pp. 15-28, 2021.
- https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-n78
- Y. Wang, D. Deng, L. Liu, S. Wei, S. Yin, "PL-NPU: An Energy-Efficient Edge-Device DNN Training Processor With Posit-Based Logarithm-Domain Computing," IEEE Transactions on Circuits and Systems I: Regular Papers, 2022.
- L. Lu, Y. Liang, Q. Xiao, S. Yan, "Evaluating fast Algorithms for Convolutional Neural Networks on FPGAs," in 2017 IEEE 25th Annual International Symposium on Field-programmable Custom Computing Machines (FCCM), pp. 101-108, 2017.
- Y. H. Chen, T. Krishna, J. S. Emer, V. Sze, "Eyeriss: An Energy-efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks," IEEE Journal of Solid-state Circuits, Vol. 52, No. 1, pp. 127-138, 2016. https://doi.org/10.1109/JSSC.2016.2616357
- Y. H. Chen, T. J. Yang, J. Emer, V. Sze, "Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 9, No. 2, pp. 292-308, 2019. https://doi.org/10.1109/jetcas.2019.2910232
- K. Prabhu, A. Gural, Z. F. Khan, R. M. Radway, M. Giordano, K. Koul, R. Doshi, J. W. Kustin, T. Liu, G. B. Lopes, V. Turbiner, W. S. Khwa, Y. D. Chih, M. F. Chang, G. Lallement, B. Murmann, S. Mitra, P. Raina, "CHIMERA: A 0.92-TOPS, 2.2-TOPS/W Edge AI Accelerator With 2-MByte On-Chip Foundry Resistive RAM for Efficient Training and Inference," IEEE Journal of Solid-State Circuits, Vol. 57, No. 4, pp. 1013-1026, 2022. https://doi.org/10.1109/JSSC.2022.3140753
- L. Deng, "The Mnist Database of Handwritten Digit Images for Machine Learning Research [best of the web]," IEEE Signal Processing Magazine, Vol. 29, No. 6, pp. 141-142, 2012. https://doi.org/10.1109/MSP.2012.2211477
- J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, "Imagenet: A Large-scale Hierarchical Image Database," in 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, 2009.
- Y. LeCun, "LeNet-5, Convolutional Neural Networks," URL: http://yann.lecun.com/exdb/lenet, Vol. 20, No. 5, pp. 14, 2015.
- K. Simonyan, A. Zisserman, "Very Deep Convolutional Networks for Large-scale Image Recognition," arXiv preprint arXiv:1409.1556, 2014.
- K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016.
- H. Wu, P. Judd, X. Zhang, M. Isaev, P. Micikevicius, "Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation," arXiv preprint arXiv:2004.09602, 2020.