DOI QR코드

DOI QR Code

Development of Secondary Battery Module Cooling System Technology for Fast Charging

고속 충전을 위한 이차전지모듈 냉각시스템 기술 개발

  • 강석준 (전북대학교융합기술경영학과) ;
  • 김미주 ((주)CORN) ;
  • 성동길 ((주)CORN) ;
  • 오미영 ((재)전북테크노파크이차전지소재융합팀) ;
  • 배준수 (전북대학교산업정보시스템공학과)
  • Received : 2022.07.28
  • Accepted : 2022.08.11
  • Published : 2022.08.31

Abstract

Because high power with large size cell is used for the battery pack of hybrid electric vehicles and electric vehicles (HEV and EV), average temperature in a battery cell is the important criteria of the thermal management of the battery pack. Furthermore, fast charging technology is required to reduce battery charging time. Since battery pack performance and lifespan are deteriorated due to the heat of cells and electronic components caused by fast charging, an effective cooling system is required to reduce performance deterioration. In this study, a cooling system and module design applied to a pouch-type for fast charging battery cell are investigated, and the cooling performance that can maximize the efficiency of the battery was analyzed. The result shows that the vapor chamber cooling system has better cooling performance, the temperature drop in the module was 5.82 ℃ compared with aluminum cooling plates.

하이브리드 자동차 및 전기 자동차(하이브리드 및 전기자동차)용 배터리 팩은 고용량 대면적 셀을 적용하기 때문에 배터리 셀의 평균 온도는 중요한 관리 기준이 된다. 최근에는, 배터리 충전시간을 줄이기 위한 고속 충전 기술이 요구되고 있으며, 이에 따른 셀과 전장부품의 발열로 인해 배터리 팩 성능 및 수명의 저하가 발생한다. 따라서, 고속 충전에 따른 배터리 팩의 성능저하를 방지하기 위해 효과적인 배터리 냉각시스템이 필요하다. 본 연구에서는 파우치형 고속 충전용 배터리 셀 적용 냉각시스템 및 모듈 설계를 도출하고 배터리의 효율을 극대화할 수 있는 냉각성능을 분석하였다. 베이퍼챔버 냉각시스템을 적용한 모듈의 온도 편차 분석 결과 모듈 내 온도 편차는 5.82 ℃로 기존 알루미늄 냉각판 대비 낮은 온도를 보여 우수한 냉각시스템 효과를 보였다.

Keywords

References

  1. S. G. Lee and B. J. Park, Applications and impact of V2G technology for electric vehicle and charging infrastructure, J. Convergence Cult. Technol., 5(2), 367 (2019).
  2. K. Chen, S. Wang, M. Song, and L. Chen, Structure optimization of parallel air-cooled battery thermal management system, Int. J. Heat Mass Transf., 111, 943 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.026
  3. H. S. See and H. M. Cho, Thermal management system for electric vehicle batteries and technology trends, J. Energy Eng., 23(2), 57 (2014). https://doi.org/10.5855/ENERGY.2014.23.2.057
  4. B. Y. Kim and D.-R. Lee, Optimization design for augmentation of cooling performance utilizing leading-edge materials in electric vehicle battery cells, J. Korean Soc. Precis. Eng., 37(7), 529 (2020). https://doi.org/10.7736/JKSPE.020.044
  5. H. Oh and S. Park, Effect of coolant flow characteristics in cooling plates on the performance of HEV/EV battery cooling systems, Trans. Korea Soc. Automot. Eng., 22(3), 179 (2014). https://doi.org/10.7467/KSAE.2014.22.3.179
  6. T. Otgonpurev, G.-S. Ko, and Y. C. Park, A study on the thermal characteristics of cooling system for securing battery stability in electric vehicle, Trans. Korea Soc. Geotherm. Energy Eng., 16(2), 7 (2020).
  7. S. Baek and S. Park, Thermal analysis of a battery cooling system with aluminum cooling plates for hybrid electric vehicles and electric vehicles, Trans. Korea Soc. Automot. Eng., 22(3), 60 (2014).
  8. R. Zhao, S. Zhang, J. Liu, and J. Gu, A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system, J. Power Sources, 299, 557 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.001
  9. S. B. Hyun, B. Y. Kim, J. H. Song, and D.-R. Lee, A study on heat radiation performance for different layout of electric vehicle secondary battery cell, J. Korean Soc. Precis. Eng., 37(4), 271 (2020). https://doi.org/10.7736/JKSPE.020.007
  10. E. Jiaqiang, M. Yue, J. Chen, H. Zhu, Y. Deng, Y. Zhu, F. Zhang, M. Wen, B. Zhang, and S. Kang, Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle, Appl. Therm. Eng., 144, 231 (2018). https://doi.org/10.1016/j.applthermaleng.2018.08.064
  11. O. Elsewify, M. Souri, M. N. Esfahani, E. Hosseinzadeh, and M. Jabbari, A new method for internal cooling of a large format lithium-ion battery pouch cell, Energy, 225, 120139 (2021). https://doi.org/10.1016/j.energy.2021.120139
  12. M. J. Kim, H. H. Cho, and D. H. Shin, Numerical analysis of cooling chamber for pouch battery using cooling chamber, Proceedings of 2021 KSMPE Autumn Conference, December 1-3, Jeju, Korea (2021).