DOI QR코드

DOI QR Code

Abiraterone Acetate Attenuates SARS-CoV-2 Replication by Interfering with the Structural Nucleocapsid Protein

  • Kim, Jinsoo (Department of Microbiology, College of Medicine, Hallym University) ;
  • Hwang, Seok Young (College of Pharmacy, Natural Products Research Institute, Seoul National University) ;
  • Kim, Dongbum (Institute of Medical Science, College of Medicine, Hallym University) ;
  • Kim, Minyoung (Department of Microbiology, College of Medicine, Hallym University) ;
  • Baek, Kyeongbin (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kang, Mijeong (Department of Microbiology, College of Medicine, Hallym University) ;
  • An, Seungchan (College of Pharmacy, Natural Products Research Institute, Seoul National University) ;
  • Gong, Junpyo (College of Pharmacy, Natural Products Research Institute, Seoul National University) ;
  • Park, Sangkyu (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Kandeel, Mahmoud (Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University) ;
  • Lee, Younghee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Noh, Minsoo (College of Pharmacy, Natural Products Research Institute, Seoul National University) ;
  • Kwon, Hyung-Joo (Department of Microbiology, College of Medicine, Hallym University)
  • Received : 2022.03.13
  • Accepted : 2022.04.14
  • Published : 2022.09.01

Abstract

The drug repurposing strategy has been applied to the development of emergency COVID-19 therapeutic medicines. Current drug repurposing approaches have been directed against RNA polymerases and viral proteases. Recently, we found that the inhibition of the interaction between the SARS-CoV-2 structural nucleocapsid (N) and spike (S) proteins decreased viral replication. In this study, drug repurposing candidates were screened by in silico molecular docking simulation with the SARS-CoV-2 structural N protein. In the ChEMBL database, 1994 FDA-approved drugs were selected for the in silico virtual screening against the N terminal domain (NTD) of the SARS-CoV-2 N protein. The tyrosine 109 residue in the NTD of the N protein was used as the center of the ligand binding grid for the docking simulation. In plaque forming assays performed with SARS-CoV-2 infected Vero E6 cells, atovaquone, abiraterone acetate, and digoxin exhibited a tendency to reduce the size of the viral plagues without affecting the plaque numbers. Abiraterone acetate significantly decreased the accumulation of viral particles in the cell culture supernatants in a concentration-dependent manner. In addition, abiraterone acetate significantly decreased the production of N protein and S protein in the SARS-CoV-2-infected Vero E6 cells. In conclusion, abiraterone acetate has therapeutic potential to inhibit the viral replication of SARS-CoV-2.

Keywords

Acknowledgement

We thank the National Culture Collection for Pathogens for providing the SARS-CoV-2 (hCoV-19/South Korea/KCDC03/2020, NCCP No. 43326). This research was supported by grants from the National Research Foundation (NRF-2020M3A9I2107294) funded by the Ministry of Science and ICT in the Republic of Korea. This work was also supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (Project No. GRANT672).

References

  1. Cho, J., Lee, Y. J., Kim, J. H., Kim, S. I., Kim, S. S., Choi, B. S. and Choi, J. H. (2020) Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci. Rep. 10, 16200.
  2. Datta, P. K., Liu, F., Fischer, T., Rappaport, J. and Qin, X. (2020) SARS-CoV-2 pandemic and research gaps: understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics 10, 7448-7464. https://doi.org/10.7150/thno.48076
  3. Farag, A. B., Wang, P., Boys, I. N., Eitson, J. L., Ohlson, M. B., Fan, W., McDougal, M. B., Amed, M. S., Schoggins, J. W. and Sadek, H. A. (2020) Identification of Atovaquone, Ouabain and Mebendazole as FDA approved drugs targeting SARS-CoV-2 (Version 4). ChemRxiv doi: 10.26434/chemrxiv.12003930.v4 [Preprint].
  4. Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S. and Olson, A. J. (2016) Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protoc. 11, 905-919. https://doi.org/10.1038/nprot.2016.051
  5. Furstenau, M., Langerbeins, P., De Silva, N., Fink, A. M., Robrecht, S., von Tresckow, J., Simon, F., Hohloch, K., Droogendijk, J., van der Klift, M., van der Spek, E., Illmer, T., Schottker, B., Fischer, K., Wendtner, C. M., Tausch, E., Stilgenbauer, S., Niemann, C. U., Gregor, M., Kater, A. P., Hallek, M. and Eichhorst, B. (2020) COVID-19 among fit patients with CLL treated with venetoclax-based combinations. Leukemia 34, 2225-2229. https://doi.org/10.1038/s41375-020-0941-7
  6. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C. and Pohlmann, S. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  7. Jeon, S., Ko, M., Lee, J., Choi, I., Byun, S. Y., Park, S., Shum, D. and Kim, S. (2020) Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 64, e00819-20.
  8. Jiang, S., Hillyer, C. and Du, L. (2020) Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 41, 355-359. https://doi.org/10.1016/j.it.2020.03.007
  9. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. and Hassabis, D. (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. https://doi.org/10.1038/s41586-021-03819-2
  10. Kandeel, M., Yamamoto, M., Al-Taher, A., Watanabe, A., Oh-Hashi, K., Park, B. K., Kwon, H. J., Inoue, J. I. and Al-Nazawi, M. (2020) Small molecule inhibitors of Middle East respiratory syndrome coronavirus fusion by targeting cavities on heptad repeat trimers. Biomol. Ther. (Seoul) 28, 311-319. https://doi.org/10.4062/biomolther.2019.202
  11. Kandeel, M., Yamamoto, M., Tani, H., Kobayashi, A., Gohda, J., Kawaguchi, Y., Park, B. K., Kwon, H. J., Inoue, J. I. and Alkattan, A. (2021) Discovery of new fusion inhibitor peptides against SARS-CoV-2 by targeting the spike S2 subunit. Biomol. Ther. (Seoul) 29, 282-289. https://doi.org/10.4062/biomolther.2020.201
  12. Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., He, S., Zhou, Z., Zhou, Z., Chen, Q., Yan, Y., Zhang, C., Shan, H. and Chen, S. (2020) Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B 10, 1228-1238. https://doi.org/10.1016/j.apsb.2020.04.009
  13. Khailany, R. A., Safdar, M. and Ozaslan, M. (2020) Genomic characterization of a novel SARS-CoV-2. Gene Rep. 19, 100682.
  14. Kim, D., Maharjan, S., Kim, J., Park, S., Park, J. A., Park, B. K., Lee, Y. and Kwon, H. J. (2021a) MUC1-C influences cell survival in lung adenocarcinoma Calu-3 cells after SARS-CoV-2 infection. BMB Rep. 54, 425-430. https://doi.org/10.5483/BMBRep.2021.54.8.018
  15. Kim, D., Kim, J., Park, S., Kim, M., Baek, K., Kang, M., Choi, J. K., Maharjan, S., Akauliya, M., Lee, Y. and Kwon, H. J. (2021b) Production of SARS-CoV-2 N protein-specific monoclonal antibody and its application in an ELISA-based detection system and targeting the interaction between the spike C-terminal domain and N protein. Front. Microbiol. 12, 726231.
  16. Kim, J., Kim, M., Kim, D., Park, S., Kang, M., Baek, K., Choi, J. K., Maharjan, S., Akauliya, M., Lee, Y. and Kwon, H. J. (2022) Targeting the interaction between spike protein and nucleocapsid protein for suppression and detection of human coronavirus OC43. Front. Immunol. 13, 835333.
  17. Kjeldsen, K., Norgaard, A. and Gheorghiade, M. (2002) Myocardial Na,K-ATPase: the molecular basis for the hemodynamic effect of digoxin therapy in congestive heart failure. Cardiovasc. Res. 55, 710-713. https://doi.org/10.1016/S0008-6363(02)00466-2
  18. Klemm, T., Ebert, G., Calleja, D. J., Allison, C. C., Richardson, L. W., Bernardini, J. P., Lu, B. G., Kuchel, N. W., Grohmann, C., Shibata, Y., Gan, Z. Y., Cooney, J. P., Doerflinger, M., Au, A. E., Blackmore, T. R., van der Heden van Noort, G. J., Geurink, P. P., Ovaa, H., Newman, J., Riboldi-Tunnicliffe, A., Czabotar, P. E., Mitchell, J. P., Feltham, R., Lechtenberg, B. C., Lowes, K. N., Dewson, G., Pellegrini, M., Lessene, G. and Komander, D. (2020) Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 39, e106275. https://doi.org/10.15252/embj.2020106275
  19. Liu, S., Lien, C. Z., Selvaraj, P. and Wang, T. T. (2020) Evaluation of 19 antiviral drugs against SARS-CoV-2 Infection. bioRxiv doi: 10.1101/2020.04.29.067983 [Preprint].
  20. Maharjan, S., Kang, M., Kim, J., Kim, D., Park, S., Kim, M., Baek, K., Lee, Y. and Kwon, H. J. (2021) Apoptosis enhances the replication of human coronavirus OC43. Viruses 13, 2199.
  21. Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., Nagata, N., Sekizuka, T., Katoh, H., Kato, F., Sakata, M., Tahara, M., Kutsuna, S., Ohmagari, N., Kuroda, M., Suzuki, T., Kageyama, T. and Takeda, M. (2020) Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. U.S.A. 117, 7001-7003. https://doi.org/10.1073/pnas.2002589117
  22. Padmanabhan, P., Desikan, R. and Dixit, N. M. (2020) Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection. PLoS Comput. Biol. 16, e1008461.
  23. Park, B. K., Maharjan, S., Lee, S. I., Kim, J., Bae, J. Y., Park, M. S. and Kwon, H. J. (2019) Generation and characterization of a monoclonal antibody against MERS-CoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex. BMB Rep. 52, 397-402. https://doi.org/10.5483/BMBRep.2019.52.6.185
  24. Park, B. K., Kim, D., Park, S., Maharjan, S., Kim, J., Choi, J. K., Akauliya, M., Lee, Y. and Kwon, H. J. (2021a) Differential signaling and virus production in Calu-3 cells and Vero cells upon SARS-CoV-infection. Biomol. Ther. (Seoul) 29, 273-281. https://doi.org/10.4062/biomolther.2020.226
  25. Park, B. K., Kim, J., Park, S., Kim, D., Kim, M., Baek, K., Bae, J. Y., Park, M. S., Kim, W. K., Lee, Y. and Kwon, H. J. (2021b) MERS-CoV and SARS-CoV-2 replication can be inhibited by targeting the interaction between the viral spike protein and the nucleocapsid protein. Theranostics 11, 3853-3867. https://doi.org/10.7150/thno.55647
  26. Perdikari, T. M., Murthy, A. C., Ryan, V. H., Watters, S., Naik, M. T. and Fawzi, N. L. (2020) SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hnRNPs. EMBO J. 39, e106478.
  27. Riva, L., Yuan, S., Yin, X., Martin-Sancho, L., Matsunaga, N., Burgstaller-Muehlbacher, S., Pache, L., De Jesus, P. P., Hull, M. V., Chang, M., Chan, J. F., Cao, J., Poon, V. K., Herbert, K., Nguyen, T. T., Pu, Y., Nguyen, C., Rubanov, A., Martinez-Sobrido, L., Liu, W. C., Miorin, L., White, K. M., Johnson, J. R., Benner, C., Sun, R., Schultz, P. G., Su, A., Garcia-Sastre, A., Chatterjee, A. K., Yuen, K. Y. and Chanda, S. K. (2020) A large-scale drug repositioning survey for SARS-CoV-2 antivirals. bioRxiv doi: 10.1101/2020.04.16.044016 [Preprint].
  28. Satarker, S. and Nampoothiri, M. (2020) Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch. Med. Res. 51, 482-491. https://doi.org/10.1016/j.arcmed.2020.05.012
  29. Sternberg, A., McKee, D. L. and Naujokat, C. (2020) Novel drugs targeting the SARS-CoV-2/COVID-19 machinery. Curr. Top. Med. Chem. 20, 1423-1433. https://doi.org/10.2174/1568026620999200517043137
  30. Weston, S., Coleman, C. M., Haupt, R., Logue, J., Matthews, K., Li, Y., Reyes, H. M., Weiss, S. R. and Frieman, M. B. (2020) Broad anti-coronavirus activity of Food and Drug Administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. J. Virol. 94, e01218-20.
  31. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hum, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C. and Zhang, Y. Z. (2020) A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269. https://doi.org/10.1038/s41586-020-2008-3
  32. Yao, H., Song, Y., Chen, Y., Wu, N., Xu, J., Sun, C., Zhang, J., Weng, T., Zhang, Z., Wu, Z., Cheng, L., Shi, D., Lu, X., Lei, J., Crispin, M., Shi, Y., Li, L. and Li, S. (2020) Molecular architecture of the SARS-CoV-2 virus. Cell 183, 730-738.e13. https://doi.org/10.1016/j.cell.2020.09.018
  33. Yin, L. and Hu, Q. (2014) CYP17 inhibitors--abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nat. Rev. Urol. 11, 32-42. https://doi.org/10.1038/nrurol.2013.274
  34. Yuan, S., Chan, J. F. W., Chik, K. K. H., Chan, C. C. Y., Tsang, J. O. L., Liang, R., Cao, J., Tang, K., Chen, L. L., Wen, K., Cai, J. P., Ye, Z. W., Lu, G., Chu, H., Jin, D. Y. and Yuen, K. Y. (2020) Discovery of the FDA-approved drugs bexarotene, cetilistat, diiodohydroxyquinoline, and abiraterone as potential COVID-19 treatments with a robust two-tier screening system. Pharmacol. Res. 159, 104960.
  35. Zeidler, A. and Karpinski, T. M. (2020) SARS-CoV, MERS-CoV, SARS-CoV-2 comparison of three emerging coronaviruses. Jundishapur J. Microbiol. 13, e103744.
  36. Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., Zheng, X. S., Zhao, K., Chen, Q. J., Deng, F., Liu, L. L., Yan, B., Zhan, F. X., Wang, Y. Y., Xiao, G. F. and Shi, Z. L. (2020a) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273. https://doi.org/10.1038/s41586-020-2012-7
  37. Zhou, R., Zeng, R., von Brunn, A. and Lei, J. (2020b) Structural characterization of the C-terminal domain of SARS-CoV-2 nucleocapsid protein. Mol. Biomed. 1, 2.
  38. Zinzula, L., Basquin, J., Bohn, S., Beck, F., Klumpe, S., Pfeifer, G., Nagy, I., Bracher, A., Hartl, F. U. and Baumeister, W. (2020) High-resolution structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe acute respiratory syndrome coronavirus 2. Biochem. Biophys. Res. Commun. 538, 54-62.