DOI QR코드

DOI QR Code

Zebrafish as a research tool for human diseases pathogenesis and drug development

  • Kim, Young Sook (Herbal Medicine Convergence Research Division, Korea Institute of Oriental Medicine) ;
  • Cho, Yong Wan (Sheba Biotech Inc.) ;
  • Lim, Hye-Won (Sheba Biotech Inc.) ;
  • Sun, Yonghua (Fish Molecular Development & Biotechnology, China Zebrafish Resource Center (CZRC), Institute of Hydrobiology)
  • Received : 2021.07.02
  • Accepted : 2022.05.24
  • Published : 2022.06.30

Abstract

Various animal models have been used to study the efficacy and action mechanisms of human diseases and medicines. Zebrafish (Danio rerio) is increasingly and successfully used as a model in translational research on human diseases. We obtained necessary information from original peer reviewed articles published in scientific 54 journals, such as Pubmed, Google Scholar, Scopus scince their inception until Dec, 2020 using the following terms: zebrafish animal models, herbal medicine, in vivo screening. In this review, we discuss the recent contributions of the various zebrafish disease models to study of herbal medicines. We focused on cancer, eye diseases, vascular diseases, diabetes and its complications, and cosmetic dermatology. We also highlight the molecular action mechanisms of medicines against these disease, demonstrated using zebrafish embryo. Zebrafish can be pivotal in bridging the gap from lab to clinical bedside. It is used as a model to understand human diseases pathogenies with further scope for drug development. Furthermore, zebrafish can reduce rat and mouse animals in biomedical research.

다양한 동물 모델이 인간 질병, 의약품의 효능 및 작용 메커니즘을 연구하는 데 사용되고 있다. Zebrafish(Danio rerio)는 여러 가지 장점이 있어 인간 질병에 대한 중개 연구의 모델로 점점 더 폭넓게 활용되고 있다. 본 논문은 Pubmed, Google Scholar, Scopus에서 2020년 12월까지 최근 10년간 zebrafish 모델, 천연물(한약), in vivo 스크리닝의 키워드를 사용하여 저널에 게재된 논문을 검토하여 필요한 정보를 얻었다. 이 리뷰에서 우리는 천연물(한약) 연구에 대한 다양한 제브라피쉬 질병 모델의 최근 경향에 대해 논의하였다. 특히, 암, 안질환, 혈관 질환, 당뇨병 및 합병증, 피부질환에 중점을 두었고, zebrafish 배아를 사용하여 이들 질병에 대한 의약품의 분자 작용 메커니즘에 관해 언급하였다. Zebrafish는 실험실에서 임상 연구까지의 격차를 줄이는 데 중추적 역할을 할 수 있는 중요한 동물 모델이다. Zebrafish는 의약품이나 화장품 개발, 질병의 병인론을 이해하기 위해 사용되고, 이로 인해 생의학 연구에서 설치류의 사용을 줄이는 데 크게 기여하고 있다.

Keywords

Acknowledgement

This article was supported by the Korea Institute of Oriental Medicine (K15140, KSN20213302) and the Technology Development Program (S3099171) funded by the Ministry of SMEs and Sartups (MSS, Korea).

References

  1. C.A. Hassig, F.Y. Zeng, P. Kung, M. Kiankarimi, S. Kim, P.W. Diaz, D. Zhai, K. Welsh, S. Morshedian, Y. Su, B. O'Keefe, D.J. Newman, Y. Rusman, H. Kaur, C.E. Salomon, S.G. Brown, B. Baire, A.R. Michel, T.R. Hoye, S. Francis, G.I. Georg, M.A. Walters, D.B. Divlianska, G.P. Roth, A.E. Wright, J.C. Reed, "Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins", Journal of Biomolecular Screening, Vol.19, No.8, pp. 1201-2011, (2014). https://doi.org/10.1177/1087057114536227
  2. A. Buriani, M.L. Garcia-Bermejo, E. Bosisio, Q. Xu, H. Li, X. Dong, M.S. Simmonds, M. Carrara, N. Tejedor, J. Lucio-Cazana, P.J. Hylands, "Omic techniques in systems biology approaches to traditional Chinese medicine research: present and future", Journal of ethnopharmacology, Vol.140, No.3, pp. 535-544, (2012). https://doi.org/10.1016/j.jep.2012.01.055
  3. E. Crighton, I. Mullaney, R. Trengove, M. Bunce, G. Maker, "The application of metabolomics for herbal medicine pharmacovigilance: a case study on ginseng", Essays in Biochemistry Vol.60, No.5, pp. 429-435, (2016). https://doi.org/10.1042/EBC20160030
  4. N. Tabassum, H. Tai, D.W. Jung, D.R. Williams, "Fishing for Nature's Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products", Evidence-based complementary and alternative medicine : eCAM 2015, 287847, (2015). https://doi.org/10.1155/2015/287847
  5. C.D. Jayasinghe, U.A. Jayawardena, Toxicity Assessment of Herbal Medicine Using Zebrafish Embryos: A Systematic Review, Evidence-based complementary and alternative medicine : eCAM 2019, 7272808, (2019).
  6. Y.M. Bradford, S. Toro, S. Ramachandran, L. Ruzicka, D.G. Howe, A. Eagle, P. Kalita, R. Martin, S.A. Taylor Moxon, K. Schaper, M. Westerfield, "Zebrafish Models of Human Disease: Gaining Insight into Human Disease at ZFIN", Institute for Laboratory Animal Research Journal, Vol.58, No.1, pp. 4-16, (2017).
  7. K. Howe, M.D. Clark, C.F. Torroja, J. Torrance, C. Berthelot, M. Muffato, J.E. Collins, S. Humphray, K. McLaren, L. Matthews, S. McLaren, I. Sealy, M. Caccamo, C. Churcher, C. Scott, J.C. Barrett, R. Koch, G.J. Rauch, S. White, W. Chow, B. Kilian, L.T. Quintais, J.A. Guerra-Assuncao, Y. Zhou, Y. Gu, J. Yen, J.H. Vogel, T. Eyre, S. Redmond, R. Banerjee, J. Chi, B. Fu, E. Langley, S.F. Maguire, G.K. Laird, D. Lloyd, E. Kenyon, S. Donaldson, H. Sehra, J. Almeida-King, J. Loveland, S. Trevanion, M. Jones, M. Quail, D. Willey, A. Hunt, J. Burton, S. Sims, K. McLay, B. Plumb, J. Davis, C. Clee, K. Oliver, R. Clark, C. Riddle, D. Elliot, G. Threadgold, G. Harden, D. Ware, S. Begum, B. Mortimore, G. Kerry, P. Heath, B. Phillimore, A. Tracey, N. Corby, M. Dunn, C. Johnson, J. Wood, S. Clark, S. Pelan, G. Griffiths, M. Smith, R. Glithero, P. Howden, N. Barker, C. Lloyd, C. Stevens, J. Harley, K. Holt, G. Panagiotidis, J. Lovell, H. Beasley, C. Henderson, D. Gordon, K. Auger, D. Wright, J. Collins, C. Raisen, L. Dyer, K. Leung, L. Robertson, K. Ambridge, D. Leongamornlert, S. McGuire, R. Gilderthorp, C. Griffiths, D. Manthravadi, S. Nichol, G. Barker, S. Whitehead, M. Kay, J. Brown, C. Murnane, E. Gray, M. Humphries, N. Sycamore, D. Barker, D. Saunders, J. Wallis, A. Babbage, S. Hammond, M. Mashreghi-Mohammadi, L. Barr, S. Martin, P. Wray, A. Ellington, N. Matthews, M. Ellwood, R. Woodmansey, G. Clark, J. Cooper, A. Tromans, D. Grafham, C. Skuce, R. Pandian, R. Andrews, E. Harrison, A. Kimberley, J. Garnett, N. Fosker, R. Hall, P. Garner, D. Kelly, C. Bird, S. Palmer, I. Gehring, A. Berger, C.M. Dooley, Z. Ersan-Urun, C. Eser, H. Geiger, M. Geisler, L. Karotki, A. Kirn, J. Konantz, M. Konantz, M. Oberlander, S. Rudolph-Geiger, M. Teucke, C. Lanz, G. Raddatz, K. Osoegawa, B. Zhu, A. Rapp, S. Widaa, C. Langford, F. Yang, S.C. Schuster, N.P. Carter, J. Harrow, Z. Ning, J. Herrero, S.M. Searle, A. Enright, R. Geisler, R.H. Plasterk, C. Lee, M. Westerfield, P.J. de Jong, L.I. Zon, J.H. Postlethwait, C. Nusslein-Volhard, T.J. Hubbard, H. Roest Crollius, J. Rogers, D.L. Stemple, "The zebrafish reference genome sequence and its relationship to the human genome", Nature, Vol.496, No.7446, pp. 498-503, (2013). https://doi.org/10.1038/nature12111
  8. W.Y. Hwang, Y. Fu, D. Reyon, M.L. Maeder, S.Q. Tsai, J.D. Sander, R.T. Peterson, J.R. Yeh, J.K. Joung, Efficient genome editing in zebrafish using a CRISPR-Cas system, Nature biotechnology, Vol.31, No.3, pp. 227-279, (2013). https://doi.org/10.1038/nbt.2501
  9. Y. Wei, D. Ma, Y. Gao, C. Zhang, L. Wang, F. Liu, "Ncor2 is required for hematopoietic stem cell emergence by inhibiting Fos signaling in zebrafish", Blood, Vol.124, No.10, pp. 1578-1585, (2014). https://doi.org/10.1182/blood-2013-11-541391
  10. K. Stoletov, R. Klemke, Catch of the day: zebrafish as a human cancer model, Oncogene, Vol.27, No.33, pp. 4509-20, (2008). https://doi.org/10.1038/onc.2008.95
  11. L.G. Beckwith, J.L. Moore, G.S. Tsao-Wu, J.C. Harshbarger, K.C. Cheng, Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio), Laboratory Investigation, Vol.80, No.3, pp. 379-385, (2000). https://doi.org/10.1038/labinvest.3780042
  12. S. Zhao, J. Huang, J. Ye, A fresh look at zebrafish from the perspective of cancer research, Journal of Experimental & Clinical Cancer Research, Vol.34, No.1, doi: 10.1186/s13046-015-0196-8 (2015).
  13. L. Mirbahai, T.D. Williams, H. Zhan, Z. Gong, J.K. Chipman, "Comprehensive profiling of zebrafish hepatic proximal promoter CpG island methylation and its modification during chemical carcinogenesis", BMC Genomics, Vol.12, No.3, doi: 10.1186/1471-2164-12-3 (2011).
  14. I. Mizgirev, S. Revskoy, "Generation of clonal zebrafish lines and transplantable hepatic tumors', Nature Protocol, Vol.5, No.3, pp. 383-394, (2010). https://doi.org/10.1038/nprot.2010.8
  15. N.Y. Storer, L.I. Zon, "Zebrafish models of p53 functions", Cold Spring Harb Perspect Biol, Vol. No.28 a001123, (2010).
  16. A.P. Haramis, A. Hurlstone, Y. van der Velden, H. Begthel, M. van den Born, G.J. Offerhaus, H.C. Clevers, "Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia", EMBO Reports, Vol.7, No.4, pp. 444-449, (2006). https://doi.org/10.1038/sj.embor.7400638
  17. F. Yang, J. Xiong, X.E. Jia, Z.H. Gu, J.Y. Shi, Y. Zhao, J.M. Li, S.J. Chen, W.L. Zhao, "GSTT1 deletion is related to polycyclic aromatic hydrocarbons-induced DNA damage and lymphoma progression", PLoS One, Vol.9, No.2, pp. e89302, (2014).
  18. H.R. Shive, R.R. West, L.J. Embree, M. Azuma, R. Sood, P. Liu, D.D. "Hickstein, brca2 in zebrafish ovarian development, spermatogenesis, and tumorigenesis", Proceedings of the National Academy of Sciences of the United States of America, Vol.107, No.45, pp. 19350-19355, (2010). https://doi.org/10.1073/pnas.1011630107
  19. D.M. Langenau, D. Traver, A.A. Ferrando, J.L. Kutok, J.C. Aster, J.P. Kanki, S. Lin, E. Prochownik, N.S. Trede, L.I. Zon, A.T. Look, "Myc-induced T cell leukemia in transgenic zebrafish", Science, Vol.299, No.5608, pp. 887-890, (2003). https://doi.org/10.1126/science.1080280
  20. Z. Li, W. Zheng, Z. Wang, Z. Zeng, H. Zhan, C. Li, L. Zhou, C. Yan, J.M. Spitsbergen, Z. Gong, "A transgenic zebrafish liver tumor model with inducible Myc expression reveals conserved Myc signatures with mammalian liver tumors", Disease Models & Mechanisms, Vol.6, No.2, pp. 414-423, (2013). https://doi.org/10.1242/dmm.010462
  21. S. Zhu, J.S. Lee, F. Guo, J. Shin, A.R. Perez-Atayde, J.L. Kutok, S.J. Rodig, D.S. Neuberg, D. Helman, H. Feng, R.A. Stewart, W. Wang, R.E. George, J.P. Kanki, A.T. Look, "Activated ALK collaborates with MYCN in neuroblastoma pathogenesis", Cancer Cell, Vol.21, No.3, pp. 362-373, (2012). https://doi.org/10.1016/j.ccr.2012.02.010
  22. N.Y. Storer, R.M. White, A. Uong, E. Price, G.P. Nielsen, D.M. Langenau, L.I. Zon, "Zebrafish rhabdomyosarcoma reflects the developmental stage of oncogene expression during myogenesis", Development, Vol.140, No.14, pp. 3040-3050, (2013). https://doi.org/10.1242/dev.087858
  23. C.Y. Chu, C.F. Chen, R.S. Rajendran, C.N. Shen, T.H. Chen, C.C. Yen, C.K. Chuang, D.S. Lin, C.D. Hsiao, "Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish", PLoS One, Vol.7, No.5, pp. e36474, (2012).
  24. R. Richardson, D. Tracey-White, A. Webster, M. Moosajee, "The zebrafish eye-a paradigm for investigating human ocular genetics", Eye (Lond), Vol.31, No.1, pp. 68-86, (2017). https://doi.org/10.1038/eye.2016.198
  25. S.H. Jung, Y.S. Kim, Y.R. Lee, J.S. Kim, "High glucose-induced changes in hyaloid-retinal vessels during early ocular development of zebrafish: a short-term animal model of diabetic retinopathy", British journal of pharmacology, Vol.173, No.1, pp. 15-26, (2016). https://doi.org/10.1111/bph.13279
  26. P. Goldsmith, "Zebrafish as a pharmacological tool: the how, why and when", Current opinion in pharmacology, Vol.4, No.5, pp. 504-512, (2004). https://doi.org/10.1016/j.coph.2004.04.005
  27. A. Schuermann, C.S. Helker, W. Herzog, "Angiogenesis in zebrafish", Seminars in cell & developmental biology, Vol.31, pp. 106-114, (2014). https://doi.org/10.1016/j.semcdb.2014.04.037
  28. Y.S. Kim, S.H. Jung, D.H. Jung, S.J. Choi, Y.R. Lee, J.S. Kim, "Gas6 stimulates angiogenesis of human retinal endothelial cells and of zebrafish embryos via ERK1/2 signaling", PLoS One, Vol.9, No.1, pp. e83901, (2014).
  29. N.D. Lawson, B.M. Weinstein, In vivo imaging of embryonic vascular development using transgenic zebrafish, Developmental biology, Vol.248, No.2, pp. 307-318, (2002). https://doi.org/10.1006/dbio.2002.0711
  30. W. Huang, Y. Liang, J. Wang, G. Li, G. Wang, Y. Li, H.Y. Chung, "Anti-angiogenic activity and mechanism of kaurane diterpenoids from Wedelia chinensis", Phytomedicine : international journal of phytotherapy and phytopharmacology, Vol.23, No.3, pp. 283-292, (2016). https://doi.org/10.1016/j.phymed.2015.12.021
  31. W. Huang, X. Yu, N. Liang, W. Ge, H.F. Kwok, C.B. Lau, Y. Li, H.Y. Chung, "Anti-angiogenic Activity and Mechanism of Sesquiterpene Lactones from Centipeda minima", Natural product communications, Vol.11, No.4, pp. 435-438, (2016).
  32. W. Huang, J. Wang, Y. Liang, W. Ge, G. Wang, Y. Li, H.Y. Chung, "Potent anti-angiogenic component in Croton crassifolius and its mechanism of action", Journal of ethnopharmacology, Vol.175, pp. 185-191 (2015). https://doi.org/10.1016/j.jep.2015.09.021
  33. T. Zhong, L. Piao, H.J. Kim, X. Liu, S. Jiang, G. Liu, "Chlorogenic Acid-Enriched Extract of Ilex kudingcha C.J. Tseng Inhibits Angiogenesis in Zebrafish", Journal of medicinal food, Vol.20, No.12, pp. 1160-1167, (2017). https://doi.org/10.1089/jmf.2017.3987
  34. X. Yu, Y. Tong, H.F. Kwok, S.C. Sze, L. Zhong, C.B. Lau, W. Ge, "Anti-angiogenic activity of Erxian Decoction, a traditional Chinese herbal formula, in zebrafish", Biological and Pharmaceutical Bulletin, Vol.35, No.12, pp. 2119-2727, (2012). https://doi.org/10.1248/bpb.b12-00130
  35. J. Lee, D.W. Jung, W.H. Kim, J.I. Um, S.H. Yim, W.K. Oh, D.R. Williams, "Development of a highly visual, simple, and rapid test for the discovery of novel insulin mimetics in living vertebrates", ACS chemical biology, Vol.8, No.8, pp. 1803-1814, (2013). https://doi.org/10.1021/cb4000162
  36. L. Zang, Y. Shimada, N. Nishimura, "Development of a Novel Zebrafish Model for Type 2 Diabetes Mellitus", Science Reports, Vol.7, No.1, pp. 1461, (2017).
  37. L. Zang, L.A. Maddison, W. Chen, "Zebrafish as a Model for Obesity and Diabetes", Frontiers in Cell and Developmental Biology, Vol.6, No.91, doi:10.3389/fcell.2018.00091, (2018).
  38. R.A. Kimmel, S. Dobler, N. Schmitner, T. Walsen, J. Freudenblum, D. Meyer, "Diabetic pdx1-mutant zebrafish show conserved responses to nutrient overload and anti-glycemic treatment", Scientific reports, Vol.18, No.5, pp. 14241, (2015).
  39. K. Jorgens, J.L. Hillebrands, H.P. Hammes, J. Kroll, "Zebrafish: a model for understanding diabetic complications, Experimental and clinical endocrinology & diabetes : official journal", German Society of Endocrinology and German Diabetes Association, Vol.120, No.4, pp. 186-187, (2012).
  40. I.S. Lee, S.H. Jung, J.S. Kim, "Polyphenols from Euphorbia pekinensis Inhibit AGEs Formation In Vitro and Vessel Dilation in Larval Zebrafish In Vivo", Planta Medicine, Vol.84, No.3, pp. 176-181, (2018). https://doi.org/10.1055/s-0043-120447
  41. I.S. Lee, Y.J. Kim, S.H. Jung, J.H. Kim, J.S. Kim, "Flavonoids from Litsea japonica Inhibit AGEs Formation and Rat Lense Aldose Reductase In Vitro and Vessel Dilation in Zebrafish", Planta Medicine, Vol.83, No.3-4, pp. 318-325, (2017).
  42. I.S. Lee, Y.S. Kim, S.H. Jung, S.Y. Yu, J.H. Kim, H. Sun, J.S. Kim, "Lignans from the stems and leaves of Brandisia hancei and their effects on VEGF-induced vascular permeability and migration of HRECs and DLAV formation in zebrafish", Bioscience, Biotechnology, and Biochemistry, Vol.79, No.4, pp. 581-586, (2015). https://doi.org/10.1080/09168451.2014.991687
  43. I.S. Lee, S.Y. Yu, S.H. Jung, Y.R. Lee, Y.M. Lee, J.H. Kim, H. Sun, J.S. Kim, "Proanthocyanidins from Spenceria ramalana and their effects on AGE formation in vitro and hyaloid-retinal vessel dilation in larval zebrafish in vivo", Journal of Natural Products, Vol.76, No.10, pp. 1881-1888, (2013). https://doi.org/10.1021/np400442b
  44. A.F.B. Lajis, "A Zebrafish Embryo as an Animal Model for the Treatment of Hyperpigmentation in Cosmetic Dermatology Medicine", Medicina (Kaunas), Vol.54, No.3, pp. 35, (2018).
  45. W. Qian, W. Liu, D. Zhu, Y. Cao, A. Tang, G. Gong, H. Su, "Natural skin-whitening compounds for the treatment of melanogenesis (Review)", Experimental and Therapeutic Medicine, Vol.20, No.1, pp. 173-185, (2020). https://doi.org/10.3892/etm.2020.8687
  46. R.L. Lamason, M.A. Mohideen, J.R. Mest, A.C. Wong, H.L. Norton, M.C. Aros, M.J. Jurynec, X. Mao, V.R. Humphreville, J.E. Humbert, S. Sinha, J.L. Moore, P. Jagadeeswaran, W. Zhao, G. Ning, I. Makalowska, P.M. McKeigue, D. O'Donnell, R. Kittles, E.J. Parra, N.J. Mangini, D.J. Grunwald, M.D. Shriver, V.A. Canfield, K.C. Cheng, "SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans", Science, Vol.310, No.5755, pp. 1782-1786, (2005). https://doi.org/10.1126/science.1116238
  47. R.N. Kelsh, B. Schmid, J.S. Eisen, "Genetic analysis of melanophore development in zebrafish embryos", Developmental Biology, Vol.225, No.2, pp. 277-293, (2000). https://doi.org/10.1006/dbio.2000.9840
  48. K.C. Cheng, Skin color in fish and humans: impacts on science and society, Zebrafish, Vol.5, No.4, pp. 237-242, (2008). https://doi.org/10.1089/zeb.2008.0577
  49. V.C. Lin, H.Y. Ding, P.C. Tsai, J.Y. Wu, Y.H. Lu, T.S. Chang, "In vitro and in vivo melanogenesis inhibition by biochanin A from Trifolium pratense", Bioscience, Biotechnology, and Biochemistry, Vol.75, No.5, pp. 914-918, (2011). https://doi.org/10.1271/bbb.100878
  50. J. Lim, S. Nam, J.H. Jeong, M.J. Kim, Y. Yang, M.S. Lee, H.G. Lee, J.H. Ryu, J.S. Lim, "Kazinol U inhibits melanogenesis through the inhibition of tyrosinase-related proteins via AMP kinase activation", British Journal of Pharmacology, Vol.176, No.5, pp. 737-750, (2019). https://doi.org/10.1111/bph.14560
  51. R. Richardson, K. Slanchev, C. Kraus, P. Knyphausen, S. Eming, M. Hammerschmidt, "Adult zebrafish as a model system for cutaneous wound-healing research", Journal of Investigative Dermatology, Vol.133, No.6, pp. 1655-1665, (2013). https://doi.org/10.1038/jid.2013.16
  52. R.J. Richardson, "Parallels between vertebrate cardiac and cutaneous wound healing and regeneration", Regenerative Medicine, Vol.3, pp. 21, pp. 1-9, (2018).
  53. I.Z. Zainol Abidin, S. Fazry, N.H. Jamar, H.R. Ediwar Dyari, Z. Zainal Ariffin, A.N. Johari, N.S. Ashaari, N.A. Johari, R. Megat Abdul Wahab, S.H. Zainal Ariffin, "The effects of Piper sarmentosum aqueous extracts on zebrafish (Danio rerio) embryos and caudal fin tissue regeneration", Scientific Reports, Vol.10, No.1, pp. 14165, (2020).
  54. M. Alvarez, M.N. Chavez, M. Miranda, G. Aedo, M.L. Allende, J.T. Egana, "A Novel In Vivo Model to Study Impaired Tissue Regeneration Mediated by Cigarette Smoke", Scientific Reports, Vol.8, No.1, pp. 10926, (2018).