DOI QR코드

DOI QR Code

비균일 진주층 모사 다층형 복합재료의 내충격성에 관한 수치해석

Numerical Study on Impact Resistance of Nonuniform Nacre-patterned Multi-layer Structures

  • 이태희 (한국과학기술원 건설 및 환경공학과) ;
  • 고권환 (한국과학기술원 건설 및 환경공학과) ;
  • 홍정욱 (한국과학기술원 건설 및 환경공학과)
  • Lee, Tae Hee (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ko, Kwonhwan (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hong, Jung-Wuk (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2022.05.06
  • 심사 : 2022.07.05
  • 발행 : 2022.08.31

초록

우수한 역학적 성능을 가진 생물체의 구조를 모방하여 고성능의 복합재료를 개발하려는 노력이 최근 활발히 이뤄지고 있다. 진주층 구조는 구성재료 대비 월등히 높은 파괴인성을 지닌다는 점에서 촉망받는 자연 모사 구조 중 하나이다. 하지만, 진주층 모사 구조의 형상이 변형될 때 구조의 충격성능이 어떻게 달라지는지에 관한 연구는 아직 충분히 진행되지 않았다. 본 연구에서는 무작위로 변형된 진주층 모사 복합재의 수치모델을 개발하고 충격성능을 분석하였다. 먼저, 균일한 진주층 모사 패턴에서 플레이트 판의 평면 크기를 무작위로 변형하는 알고리즘을 개발하고 이를 활용하여 불균일한 진주층 패턴 모사 구조를 모델링하였다. 그 후, 낙하충격 시뮬레이션을 수행하고 해당 모델의 충격거동을 에너지 흡수율과 본 미세스 응력 분포, 충격력-시간 그래프를 활용하여 평가하였다. 수치해석결과를 바탕으로, 충돌 범위 주변 플레이트 판의 기하학적 형상이 불균일할수록 진주층 모사 구조의 내충격성이 저하됨을 입증하였다. 이러한 진주층 모사 형상에 대한 심층적인 이해는 진주층 모사 구조의 최적설계를 수립하는 데 효율적으로 활용될 수 있을 것으로 기대된다.

Significant efforts have been devoted to developing high-performance composite materials by emulating the structure of biological creatures with superior mechanical characteristics. Nacre has been one of the most sought-after natural structures due to its exceptional fracture toughness compared with the constituent materials. However, the effect of manipulating the nacre-like geometry on the impact performance has not been fully investigated thus far. In this study, composites of randomly manipulated nacreous geometry are numerically developed and the impact performance is analyzed. We develop an algorithm by which the planar area of platelets in the nacre-like design is randomly resized. Thereafter, the numerical models of nonuniform nacre-patterned multi-layer structures are developed and the drop-weight impact simulation is performed. The impact behaviors of the model are evaluated by using the ratio of absorbed energy, the von Mises stress distribution, and the impact force-time curve. Therefore, the effect of the geometric irregularity on the nacre-patterned design is elucidated. This insight can be efficiently utilized in establishing the optimum design of the nacre-patterned structure.

키워드

과제정보

이 논문은 국토교통부/국토교통과학기술진흥원의 지원(과제번호 21CTAP-C163758-01)으로 수행되었습니다. 이에 감사드립니다.

참고문헌

  1. Addadi, L., Joester, D., Nudelman, F., Weiner, S. (2006) Mollusk Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes, Chem.-A Eur. J., 12(4), pp.980~987. https://doi.org/10.1002/chem.200500980
  2. Ahn, J.S., Woo, K.S. (2009) Subparametric Element Based on Partial-Linear Layerwise Theory for the Analysis of Orthotropic Laminate Composites, J. Comput. Struct. Eng. Inst. Korea, 22(2), pp.189~196.
  3. Attolico, M.A., Casavola, C., Cazzato, A., Moramarco, V., Renna, G. (2020) Effect of Extrusion Temperature on Fused Filament Fabrication Parts Orthotropic Behaviour, Rapid Prototyp. J., 26(4), pp.639~647. https://doi.org/10.1108/rpj-08-2019-0207
  4. Barthelat, F., Tang, H., Zavattieri, P.D., Li, C.M., Espinosa, H.D. (2007) On the Mechanics of Mother-of-Pearl: A Key Feature in the Material Hierarchical Structure, J. Mech. & Phys. Solids, 55(2), pp.306~337. https://doi.org/10.1016/j.jmps.2006.07.007
  5. Basudhar, A., Basu, U., Stander, N., Gandikota, I. (2017) User's Manual: Integrated Computational Materials Engineering using LS-DYNA and LS-OPT.
  6. Casavola, C., Cazzato, A., Moramarco, V., Pappalettere, C. (2016) Orthotropic Mechanical Properties of Fused Deposition Modelling Parts Described by Classical Laminate Theory, Mater. & Des., 90, pp.453~458. https://doi.org/10.1016/j.matdes.2015.11.009
  7. Dogan, F., Hadavinia, H., Donchev, T., Bhonge, P.S. (2012) Delamination of Impacted Composite Structures by Cohesive Zone Interface Elements and Tiebreak Contact, Central Eur. J. Eng., 2(4), pp.612~626.
  8. Ghazlan, A., Ngo, T., Tan, P., Xie, Y.M., Tran, P., Donough, M. (2021) Inspiration from Nature's body armours-a review of biological and bioinspired composites. Composites Part B: Engineering, 205, 108513.
  9. Gu, G.X., Takaffoli, M., Hsieh, A.J., Buehler, M.J. (2016) Biomimetic Additive Manufactured Polymer Composites for Improved Impact Resistance, Extreme Mech. Letters, 9, pp.317~323. https://doi.org/10.1016/j.eml.2016.09.006
  10. Guo, H., Bastien, C., Blundell, M., Wood, G. (2014) Development of a Detailed Aircraft Tyre Finite Element Model for Safety Assessment, Mater. & Des., 53, pp.902~909. https://doi.org/10.1016/j.matdes.2013.05.046
  11. Guo, L., Lv, Y., Deng, Z., Wang, Y., Zan, X. (2016) Tension Testing of Silicone Rubber at High Strain Rates, Polym. Test., 50, pp.270~275. https://doi.org/10.1016/j.polymertesting.2016.01.021
  12. Hallquist, J.O. (2006) LS-DYNA Theory Manual, Livermore Software Technology Corporation, 3, pp.25~31.
  13. Holzapfel, G.A., Mechanics, N.L.S. (2000) A Continuum Approach for Engineering.
  14. ISO, B. (1997) Plastics-Determination of Tensile Properties, Part 4: Test Conditions for Isotropic and Orthotropic Fibre-Reinforced Plastic Composites.
  15. Ko, K., Jin, S., Lee, S.E., Hong, J.W. (2020) Impact Resistance of Nacre-Like Composites Diversely Patterned by 3D Printing, Compos. Struct., 238, 111951.
  16. Ko, K., Jin, S., Lee, S.E., Lee, I., Hong, J.W. (2019) Bio-Inspired Bimaterial Composites Patterned using Three-Dimensional Printing, Compos. Part B: Eng., 165, pp.594~603. https://doi.org/10.1016/j.compositesb.2019.02.008
  17. Ko, K., Lee, S., Hwang, Y.K., Jin, S., Hong, J.W. (2022) Investigation on the Impact Resistance of 3D Printed Nacre-Like Composites, Thin-Walled Struct., 177, 109392.
  18. Kucewicz, M., Baranowski, P., Malachowski, J. (2019) A Method of Failure Modeling for 3D Printed Cellular Structures, Mater. & Des., 174, 107802.
  19. Nishida, M., Yamaguchi, M., Todo, M., Takayama, T., Haggblad, H.A., Jonsen, P. (2009) Evaluation of Dynamic Compressive Properties of PLA Polymer Blends using Split Hopkinson Pressure Bar, In International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading: 07/09/2009-11/09/2009 (Vol.1, pp.909~915). EDP Sciences.
  20. Rabiei, R., Bekah, S., Barthelat, F. (2010) Failure Mode Transition in Nacre and Bone-Like Materials, Acta Biomaterialia, 6(10), pp.4081~4089. https://doi.org/10.1016/j.actbio.2010.04.008
  21. Rim, J.E., Zavattieri, P., Juster, A., Esinosa, H.D. (2011) Dimensional Analysis and Parametric Studies for Designing Artificial Nacre, J. Mech. behav. Biomed. Mater., 4(2), pp. 190~211. https://doi.org/10.1016/j.jmbbm.2010.11.006
  22. Rodrigues, J.R., Alves, N.M., Mano, J.F. (2017) Nacre-Inspired Nanocomposites Produced using Layer-by-Layer Assembly: Design Strategies and Biomedical Applications, Mater. Sci. & Eng.: C, 76, pp.1263~1273. https://doi.org/10.1016/j.msec.2017.02.043
  23. Shivakumar, N., Deb, A., Chou, C., Chittappa, H. (2014) A Methodology for Characterization of the Strain Rate-Dependent Behavior of PU Foam. SAE Int. J. Mater. & Manuf., 7(3), pp.514~519. https://doi.org/10.4271/2014-01-0539
  24. Sibson, R. (1980) A Vector Identity for the Dirichlet Tessellation, In Mathematical Proceedings of the Cambridge Philos. Soc., 87(1), pp.151~155. https://doi.org/10.1017/S0305004100056589
  25. Sun, M.Q., Shen, P., Jiang, Q.C. (2019) Microstructures and Mechanical Characterizations of High-Performance Nacre-Inspired Al/Al2O3 Composites, Compos. Part A: Appl. Sci. & Manuf., 121, pp.465~473. https://doi.org/10.1016/j.compositesa.2019.04.007
  26. Ubaid, J., Wardle, B.L., Kumar, S. (2020) Bioinspired Compliance Grading Motif of Mortar in Nacreous Materials, ACS Appl. Mater. & Interfaces, 12(29), pp.33256~33266. https://doi.org/10.1021/acsami.0c08181
  27. Wang, Y., Xia, S., Li, H., Wang, J. (2019) Unprecedentedly Tough, Folding-Endurance, and Multifunctional Graphene-based Artificial Nacre with Predesigned 3D Nanofiber Network as Matrix, Adv. Funct. Mater., 29(38), 1903876.
  28. Wei, Z., Xu, X. (2021) Gradient Design of Bio-Inspired Nacre-Like Composites for Improved Impact Resistance, Compos. Part B: Eng., 215, 108830.
  29. Wu, K., Zheng, Z., Zhang, S., He, L., Yao, H., Gong, X., Ni, Y. (2019) Interfacial Strength-Controlled Energy Dissipation Mechanism and Optimization in Impact-Resistant Nacreous Structure, Mater. & Des., 163, 107532.
  30. Yang, Y., Li, X., Chu, M., Sun, H., Jin, J., Yu, K., Wang, Q., Zhou, Q., Chen, Y. (2019) Electrically Assisted 3D Printing of Nacre-Inspired Structures with Self-Sensing Capability, Sci. Adv., 5(4), eaau9490.