DOI QR코드

DOI QR Code

Effects of sleep deprivation on coronary heart disease

  • Wei, Ran (Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences) ;
  • Duan, Xiaoye (Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences) ;
  • Guo, Lixin (Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences)
  • Received : 2021.11.18
  • Accepted : 2022.06.10
  • Published : 2022.09.01

Abstract

The presence of artificial light enables humans to be active 24 h a day. Many people across the globe live in a social culture that encourages staying up late to meet the demands of various activities, such as work and school. Sleep deprivation (SD) is a severe health problem in modern society. Meanwhile, as with cardiometabolic disease, there was an obvious tendency that coronary heart disease (CHD) to become a global epidemic chronic disease. Specifically, SD can significantly increase the morbidity and mortality of CHD. However, the underlying mechanisms responsible for the effects of SD on CHD are multilayered and complex. Inflammatory response, lipid metabolism, oxidative stress, and endothelial function all contribute to cardiovascular lesions. In this review, the effects of SD on CHD development are summarized, and SD-related pathogenesis of coronary artery lesions is discussed. In general, early assessment of SD played a vital role in preventing the harmful consequences of CHD.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (82170848).

References

  1. Riemann D. Sleep hygiene, insomnia and mental health. J Sleep Res. 2018;27:3.
  2. Kansagra S. Sleep disorders in adolescents. Pediatrics. 2020;145 (Suppl 2):S204-S209. https://doi.org/10.1542/peds.2019-2056I
  3. Yaremchuk K. Sleep disorders in the elderly. Clin Geriatr Med. 2018;34:205-216. https://doi.org/10.1016/j.cger.2018.01.008
  4. Shriane AE, Ferguson SA, Jay SM, Vincent GE. Sleep hygiene in shift workers: a systematic literature review. Sleep Med Rev. 2020;53:101336.
  5. Jung SY, Kim HS, Min JY, Hwang KJ, Kim SW. Sleep hygiene- related conditions in patients with mild to moderate obstructive sleep apnea. Auris Nasus Larynx. 2019;46:95-100. https://doi.org/10.1016/j.anl.2018.06.003
  6. van der Heijden KB, Vermeulen MCM, Donjacour CEHM, Gordijn MCM, Hamburger HL, Meijer AM, van Rijn KJ, Vlak M, Weysen T. Chronic sleep reduction is associated with academic achievement and study concentration in higher education students. J Sleep Res. 2018;27:165-174. https://doi.org/10.1111/jsr.12596
  7. Booker LA, Barnes M, Alvaro P, Collins A, Chai-Coetzer CL, Mc- Mahon M, Lockley SW, Rajaratnam SMW, Howard ME, Sletten TL. The role of sleep hygiene in the risk of Shift Work Disorder in nurses. Sleep. 2020;43:zsz228.
  8. Snyder CK. Biopsychosocial outcomes of poor sleep in adolescents. J Pediatr Nurs. 2020;54:114-115. https://doi.org/10.1016/j.pedn.2020.06.006
  9. Choshen-Hillel S, Ishqer A, Mahameed F, Reiter J, Gozal D, Gileles-Hillel A, Berger I. Acute and chronic sleep deprivation in residents: cognition and stress biomarkers. Med Educ. 2021;55:174-184. https://doi.org/10.1111/medu.14296
  10. Barnes CM, Watson NF. Why healthy sleep is good for business. Sleep Med Rev. 2019;47:112-118. https://doi.org/10.1016/j.smrv.2019.07.005
  11. Garbarino S, Tripepi G, Magnavita N. Sleep health promotion in the workplace. Int J Environ Res Public Health. 2020;17:7952.
  12. Chaput JP, Dutil C, Featherstone R, Ross R, Giangregorio L, Saunders TJ, Janssen I, Poitras VJ, Kho ME, Ross-White A, Zankar S, Carrier J. Sleep timing, sleep consistency, and health in adults: a systematic review. Appl Physiol Nutr Metab. 2020;45(10 Suppl 2):S232-S247. https://doi.org/10.1139/apnm-2020-0032
  13. Kang J, Noh W, Lee Y. Sleep quality among shift-work nurses: a systematic review and meta-analysis. Appl Nurs Res. 2020;52:151227.
  14. Khan S, Duan P, Yao L, Hou H. Shiftwork-mediated disruptions of circadian rhythms and sleep homeostasis cause serious health problems. Int J Genomics. 2018;2018:8576890.
  15. Heath G, Dorrian J, Coates A. Associations between shift type, sleep, mood, and diet in a group of shift working nurses. Scand J Work Environ Health. 2019;45:402-412. https://doi.org/10.5271/sjweh.3803
  16. Lunde LK, Skare O, Mamen A, Sirnes PA, Aass HCD, Ovstebo R, Goffeng E, Matre D, Nielsen P, Heglum HSA, Hammer SE, Skogstad M. Cardiovascular health effects of shift work with long work- ing hours and night shifts: study protocol for a three-year prospective follow-up study on industrial workers. Int J Environ Res Public Health. 2020;17:589.
  17. Kuetting DLR, Feisst A, Sprinkart AM, Homsi R, Luetkens J, Thomas D, Schild HH, Dabir D. Effects of a 24-hr-shift-related short-term sleep deprivation on cardiac function: a cardiac magnetic resonance-based study. J Sleep Res. 2019;28:e12665.
  18. Gohari A, Wiebe D, Ayas N. Shift working and cardiovascular health. Chronobiol Int. 2021. doi: 10.1080/07420528.2021.1933000. [Epub ahead of print]
  19. Chellappa SL, Vujovic N, Williams JS, Scheer FAJL. Impact of circadian disruption on cardiovascular function and disease. Trends Endocrinol Metab. 2019;30:767-779. https://doi.org/10.1016/j.tem.2019.07.008
  20. McHill AW, Velasco J, Bodner T, Shea SA, Olson R. Rapid changes in overnight blood pressure after transitioning to early-morning shiftwork. Sleep. 2022;45:zsab203.
  21. Choi WS, Lee JW, Lee JY, Kim KY, Myong JP, Lee WC. The effect of special medical examination for night shift workers and follow-up management against hypertension. Int J Environ Res Public Health. 2019;16:719.
  22. Gamboa Madeira S, Reis C, Paiva T, Moreira CS, Nogueira P, Roenneberg T. Social jetlag, a novel predictor for high cardiovascular risk in blue-collar workers following permanent atypical work schedules. J Sleep Res. 2021;30:e13380.
  23. Zhu B, Shi C, Park CG, Zhao X, Reutrakul S. Effects of sleep restriction on metabolism-related parameters in healthy adults: a comprehensive review and meta-analysis of randomized controlled trials. Sleep Med Rev. 2019;45:18-30. https://doi.org/10.1016/j.smrv.2019.02.002
  24. Lee S. Naturally occurring consecutive sleep loss and day-to-day trajectories of affective and physical well-being. Ann Behav Med. 2022;56:393-404. https://doi.org/10.1093/abm/kaab055
  25. Tobaldini E, Costantino G, Solbiati M, Cogliati C, Kara T, Nobili L, Montano N. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev. 2017;74(Pt B):321-329. https://doi.org/10.1016/j.neubiorev.2016.07.004
  26. Besedovsky L, Lange T, Haack M. The sleep-immune crosstalk in health and disease. Physiol Rev. 2019;99:1325-1380. https://doi.org/10.1152/physrev.00010.2018
  27. Dominguez F, Fuster V, Fernandez-Alvira JM, Fernandez-Friera L, Lopez-Melgar B, Blanco-Rojo R, Fernandez-Ortiz A, Garcia-Pavia P, Sanz J, Mendiguren JM, Ibanez B, Bueno H, Lara-Pezzi E, Ordovas JM. Association of sleep duration and quality with subclinical atherosclerosis. J Am Coll Cardiol. 2019;73:134-144.
  28. Lechner K, von Schacky C, McKenzie AL, Worm N, Nixdorff U, Lechner B, Krankel N, Halle M, Krauss RM, Scherr J. Lifestyle factors and high-risk atherosclerosis: pathways and mechanisms beyond traditional risk factors. Eur J Prev Cardiol. 2020;27:394-406. https://doi.org/10.1177/2047487319869400
  29. Vallat R, Shah VD, Redline S, Attia P, Walker MP. Broken sleep predicts hardened blood vessels. PLoS Biol. 2020;18:e3000726.
  30. Chen S, Yang Y, Cheng GL, Jia J, Fan FF, Li JP, Huo Y, Zhang Y, Chen DF. Association between short sleep duration and carotid atherosclerosis modified by age in a Chinese community population. J Epidemiol Community Health. 2018;72:539-544. https://doi.org/10.1136/jech-2017-209464
  31. Carroll JE, Irwin MR, Seeman TE, Diez-Roux AV, Prather AA, Olmstead R, Epel E, Lin J, Redline S. Obstructive sleep apnea, night-time arousals, and leukocyte telomere length: the Multi-Ethnic Study of Atherosclerosis. Sleep. 2019;42:zsz089.
  32. Huang T, Mariani S, Redline S. Sleep irregularity and risk of cardiovascular events: the Multi-Ethnic Study of Atherosclerosis. J Am Coll Cardiol. 2020;75:991-999. https://doi.org/10.1016/j.jacc.2019.12.054
  33. Liew SC, Aung T. Sleep deprivation and its association with diseases- a review. Sleep Med. 2021;77:192-204. https://doi.org/10.1016/j.sleep.2020.07.048
  34. Makarem N, Shechter A, Carnethon MR, Mullington JM, Hall MH, Abdalla M. Sleep duration and blood pressure: recent advances and future directions. Curr Hypertens Rep. 2019;21:33.
  35. Muscente F, De Caterina R. Challenges in ischaemic heart disease: not sleeping enough, not brushing your teeth, and skipping break-fast-three ways of increasing your risk of myocardial infarction? Eur Heart J Suppl. 2020;22(Suppl L):L57-L60. https://doi.org/10.1093/eurheartj/suaa136
  36. Beaman A, Bhide MC, McHill AW, Thosar SS. Biological pathways underlying the association between habitual long-sleep and elevated cardiovascular risk in adults. Sleep Med. 2021;78:135-140. https://doi.org/10.1016/j.sleep.2020.12.011
  37. Feng X, Liu Q, Li Y, Zhao F, Chang H, Lyu J. Longitudinal study of the relationship between sleep duration and hypertension in Chinese adult residents (CHNS 2004-2011). Sleep Med. 2019;58:88-92. https://doi.org/10.1016/j.sleep.2019.01.006
  38. Merikanto I, Lahti T, Puolijoki H, Vanhala M, Peltonen M, Laatikainen T, Vartiainen E, Salomaa V, Kronholm E, Partonen T. Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. Chronobiol Int. 2013;30:470-477. https://doi.org/10.3109/07420528.2012.741171
  39. Fang J, Wheaton AG, Keenan NL, Greenlund KJ, Perry GS, Croft JB. Association of sleep duration and hypertension among US adults varies by age and sex. Am J Hypertens. 2012;25:335-341. https://doi.org/10.1038/ajh.2011.201
  40. Gangwisch JE, Feskanich D, Malaspina D, Shen S, Forman JP. Sleep duration and risk for hypertension in women: results from the nurses' health study. Am J Hypertens. 2013;26:903-911. https://doi.org/10.1093/ajh/hpt044
  41. Matassini MV, Brambatti M, Guerra F, Scappini L, Capucci A. Sleep-disordered breathing and atrial fibrillation: review of the evidence. Cardiol Rev. 2015;23:79-86. https://doi.org/10.1097/CRD.0000000000000027
  42. Marti-Almor J, Marques P, Jesel L, Garcia R, Di Girolamo E, Locati F, Defaye P, Venables P, Dompnier A, Barcelo A, Nagele H, Burri H. Incidence of sleep apnea and association with atrial fibrillation in an unselected pacemaker population: results of the observational RESPIRE study. Heart Rhythm. 2020;17:195-202. https://doi.org/10.1016/j.hrthm.2019.09.001
  43. Borel AL. Sleep apnea and sleep habits: relationships with metabolic syndrome. Nutrients. 2019;11:2628.
  44. Oliveira RF, Daniele TMDC, Facanha CFS, Forti ACE, Bruin PFC, Bruin VMS. Adiponectin levels and sleep deprivation in patients with endocrine metabolic disorders. Rev Assoc Med Bras (1992). 2018;64:1122-1128. https://doi.org/10.1590/1806-9282.64.12.1122
  45. Simon SL, Higgins J, Melanson E, Wright KP Jr, Nadeau KJ. A model of adolescent sleep health and risk for type 2 diabetes. Curr Diab Rep. 2021;21:4.
  46. Liu H, Chen A. Roles of sleep deprivation in cardiovascular dysfunctions. Life Sci. 2019;219:231-237. https://doi.org/10.1016/j.lfs.2019.01.006
  47. Fan M, Sun D, Zhou T, Heianza Y, Lv J, Li L, Qi L. Sleep patterns, genetic susceptibility, and incident cardiovascular disease: a prospective study of 385 292 UK biobank participants. Eur Heart J. 2020;41:1182-1189. https://doi.org/10.1093/eurheartj/ehz849
  48. Madsen MT, Huang C, Zangger G, Zwisler ADO, Gogenur I. Sleep disturbances in patients with coronary heart disease: a systematic review. J Clin Sleep Med. 2019;15:489-504. https://doi.org/10.5664/jcsm.7684
  49. Choi Y, Choi JW. Association of sleep disturbance with risk of cardiovascular disease and all-cause mortality in patients with new-onset type 2 diabetes: data from the Korean NHIS-HEALS. Cardiovasc Diabetol. 2020;19:61.
  50. Huang T, Zeleznik OA, Poole EM, Clish CB, Deik AA, Scott JM, Vetter C, Schernhammer ES, Brunner R, Hale L, Manson JE, Hu FB, Redline S, Tworoger SS, Rexrode KM. Habitual sleep quality, plasma metabolites and risk of coronary heart disease in postmenopausal women. Int J Epidemiol. 2019;48:1262-1274. https://doi.org/10.1093/ije/dyy234
  51. Svensson AK, Svensson T, Kitlinski M, Almgren P, Engstrom G, Nilsson PM, Melander O. Incident diabetes mellitus may explain the association between sleep duration and incident coronary heart disease. Diabetologia. 2018;61:331-341. https://doi.org/10.1007/s00125-017-4464-3
  52. Yang Q, Durmer JL, Wheaton AG, Jackson SL, Zhang Z. Sleep duration and excess heart age among US adults. Sleep Health. 2018;4:448-455. https://doi.org/10.1016/j.sleh.2018.07.001
  53. Kobayashi D, Kuriyama N, Osugi Y, Arioka H, Takahashi O. Longitudinal relationships between cardiovascular events, risk factors, and time-dependent sleep duration. Cardiol J. 2018;25:229-235.
  54. Lao XQ, Liu X, Deng HB, Chan TC, Ho KF, Wang F, Vermeulen R, Tam T, Wong MCS, Tse LA, Chang LY, Yeoh EK. Sleep quality, sleep duration, and the risk of coronary heart disease: a prospective cohort study with 60,586 adults. J Clin Sleep Med. 2018;14:109-117. https://doi.org/10.5664/jcsm.6894
  55. Bertisch SM, Pollock BD, Mittleman MA, Buysse DJ, Bazzano LA, Gottlieb DJ, Redline S. Insomnia with objective short sleep duration and risk of incident cardiovascular disease and all-cause mortality: Sleep Heart Health Study. Sleep. 2018;41:zsy047.
  56. Yazdanpanah MH, Homayounfar R, Khademi A, Zarei F, Shahidi A, Farjam M. Short sleep is associated with higher prevalence and increased predicted risk of cardiovascular diseases in an Iranian population: Fasa PERSIAN Cohort Study. Sci Rep. 2020;10:4608.
  57. Liu Y, Wheaton AG, Chapman DP, Croft JB. Sleep duration and chronic diseases among U.S. adults age 45 years and older: evidence from the 2010 Behavioral Risk Factor Surveillance System. Sleep. 2013;36:1421-1427. https://doi.org/10.5665/sleep.3028
  58. Sabanayagam C, Shankar A. Sleep duration and cardiovascular disease: results from the National Health Interview Survey. Sleep. 2010;33:1037-1042. https://doi.org/10.1093/sleep/33.8.1037
  59. Ai S, Zhang J, Zhao G, Wang N, Li G, So HC, Liu Y, Chau SW, Chen J, Tan X, Jia F, Tang X, Shi J, Lu L, Wing YK. Causal associations of short and long sleep durations with 12 cardiovascular diseases: linear and nonlinear Mendelian randomization analyses in UK Biobank. Eur Heart J. 2021;42:3349-3357. https://doi.org/10.1093/eurheartj/ehab170
  60. Ibarra-Coronado EG, Pantaleon-Martinez AM, Velazquez-Moctezuma J, Prospero-Garcia O, Mendez-Diaz M, Perez-Tapia M, Pavon L, Morales-Montor J. The bidirectional relationship between sleep and immunity against infections. J Immunol Res. 2015;2015:678164.
  61. Periasamy S, Hsu DZ, Fu YH, Liu MY. Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation. EX-CLI J. 2015;14:672-683.
  62. Jeddi S, Ghasemi A, Asgari A, Nezami-Asl A. Role of inducible nitric oxide synthase in myocardial ischemia-reperfusion injury in sleep-deprived rats. Sleep Breath. 2018;22:353-359. https://doi.org/10.1007/s11325-017-1573-7
  63. Jeddi S, Asl AN, Asgari A, Ghasemi A. The effect of sleep deprivation on cardiac function and tolerance to ischemia-reperfusion injury in male rats. Arq Bras Cardiol. 2016;106:41-48.
  64. Aghajani M, Faghihi M, Imani A, Vaez Mahdavi MR, Shakoori A, Rastegar T, Parsa H, Mehrabi S, Moradi F, Kazemi Moghaddam E. Post-infarct sleep disruption and its relation to cardiac remodeling in a rat model of myocardial infarction. Chronobiol Int. 2017;34:587-600. https://doi.org/10.1080/07420528.2017.1281823
  65. Carroll JE, Carrillo C, Olmstead R, Witarama T, Breen EC, Yokomizo M, Seeman T, Irwin MR. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging.Sleep. 2015;38:205-211. https://doi.org/10.5665/sleep.4398
  66. Wadhwa M, Prabhakar A, Anand JP, Ray K, Prasad D, Kumar B, Panjwani U. Complement activation sustains neuroinflammation and deteriorates adult neurogenesis and spatial memory impairment in rat hippocampus following sleep deprivation. Brain Behav Immun. 2019;82:129-144. https://doi.org/10.1016/j.bbi.2019.08.004
  67. Korin B, Avraham S, Azulay-Debby H, Farfara D, Hakim F, Rolls A. Short-term sleep deprivation in mice induces B cell migration to the brain compartment. Sleep. 2020;43:zsz222.
  68. Tuan LH, Lee LJ. Microglia-mediated synaptic pruning is impaired in sleep-deprived adolescent mice. Neurobiol Dis. 2019;130:104517.
  69. Lange T, Dimitrov S, Born J. Effects of sleep and circadian rhythm on the human immune system. Ann N Y Acad Sci. 2010;1193:48-59. https://doi.org/10.1111/j.1749-6632.2009.05300.x
  70. Said EA, Al-Abri MA, Al-Saidi I, Al-Balushi MS, Al-Busaidi JZ, Al-Reesi I, Koh CY, Idris MA, Al-Jabri AA, Habbal O. Sleep deprivation alters neutrophil functions and levels of Th1-related chemokines and CD4+ T cells in the blood. Sleep Breath. 2019;23:1331-1339. https://doi.org/10.1007/s11325-019-01851-1
  71. De Lorenzo BHP, Novaes EBRR, Paslar Leal T, Piqueira Garcia N, Martins Dos Santos RM, Alvares-Saraiva AM, Perez Hurtado EC, Braga Dos Reis TC, Duarte Palma B. Chronic sleep restriction impairs the antitumor immune response in mice. Neuroimmuno-modulation. 2018;25:59-67. https://doi.org/10.1159/000490352
  72. McAlpine CS, Kiss MG, Rattik S, He S, Vassalli A, Valet C, Anzai A, Chan CT, Mindur JE, Kahles F, Poller WC, Frodermann V, Fenn AM, Gregory AF, Halle L, Iwamoto Y, Hoyer FF, Binder CJ, Libby P, Tafti M, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 2019;566:383-387. https://doi.org/10.1038/s41586-019-0948-2
  73. Kong AP, Wing YK, Choi KC, Li AM, Ko GT, Ma RC, Tong PC, Ho CS, Chan MH, Ng MH, Lau J, Chan JC. Associations of sleep duration with obesity and serum lipid profile in children and adolescents. Sleep Med. 2011;12:659-665. https://doi.org/10.1016/j.sleep.2010.12.015
  74. Ness KM, Strayer SM, Nahmod NG, Chang AM, Buxton OM, Shearer GC. Two nights of recovery sleep restores the dynamic lipemic response, but not the reduction of insulin sensitivity, induced by five nights of sleep restriction. Am J Physiol Regul Integr Comp Physiol. 2019;316:R697-R703. https://doi.org/10.1152/ajpregu.00336.2018
  75. Huang NK, Buzkova P, Matthan NR, Djousse L, Hirsch CH, Kizer JR, Longstreth WT Jr, Mukamal KJ, Lichtenstein AH. Associations of serum nonesterified fatty acids with coronary heart disease mortality and nonfatal myocardial infarction: The CHS (Cardiovascular Health Study) Cohort. J Am Heart Assoc. 2021;10:e019135.
  76. Xing C, Huang X, Zhang Y, Zhang C, Wang W, Wu L, Ding M, Zhang M, Song L. Sleep disturbance induces increased cholesterol level by NR1D1 mediated CYP7A1 inhibition. Front Genet. 2020;11:610496.
  77. Cretenet G, Le Clech M, Gachon F. Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. Cell Metab. 2010;11:47-57. https://doi.org/10.1016/j.cmet.2009.11.002
  78. Jeong SM, Choi S, Kim K, Kim SM, Lee G, Park SY, Kim YY, Son JS, Yun JM, Park SM. Effect of change in total cholesterol levels on cardiovascular disease among young adults. J Am Heart Assoc. 2018;7:e008819.
  79. Wilms B, Leineweber EM, Molle M, Chamorro R, Pommerenke C, Salinas-Riester G, Sina C, Lehnert H, Oster H, Schmid SM. Sleep loss disrupts morning-to-evening differences in human white adipose tissue transcriptome. J Clin Endocrinol Metab. 2019;104:1687-1696. https://doi.org/10.1210/jc.2018-01663
  80. Ribas-Latre A, Santos RB, Fekry B, Tamim YM, Shivshankar S, Mohamed AMT, Baumgartner C, Kwok C, Gebhardt C, Rivera A, Gao Z, Sun K, Heiker JT, Snyder BE, Kolonin MG, Eckel-Mahan KL. Publisher correction: cellular and physiological circadian mechanisms drive diurnal cell proliferation and expansion of white adipose tissue. Nat Commun. 2021;12:4528. Erratum for: Nat Commun. 2021;12:3482.
  81. Figueiro MG, Goo YH, Hogan R, Plitnick B, Lee JK, Jahangir K, Moulik M, Yechoor VK, Paul A. Light-dark patterns mirroring shift work accelerate atherosclerosis and promote vulnerable lesion phenotypes. J Am Heart Assoc. 2021;10:e018151.
  82. Everson CA, Laatsch CD, Hogg N. Antioxidant defense responses to sleep loss and sleep recovery. Am J Physiol Regul Integr Comp Physiol. 2005;288:R374-R383. https://doi.org/10.1152/ajpregu.00565.2004
  83. Trivedi MS, Holger D, Bui AT, Craddock TJA, Tartar JL. Shortterm sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status. PLoS One. 2017;12:e0181978.
  84. Jowko E, Rozanski P, Tomczak A. Effects of a 36-h survival training with sleep deprivation on oxidative stress and muscle damage biomarkers in young healthy men. Int J Environ Res Public Health. 2018;15:2066.
  85. Valvassori SS, Resende WR, Dal-Pont G, Sangaletti-Pereira H, Gava FF, Peterle BR, Carvalho AF, Varela RB, Dal-Pizzol F, Quevedo J. Lithium ameliorates sleep deprivation-induced mania-like behavior, hypothalamic-pituitary-adrenal (HPA) axis alterations, oxidative stress and elevations of cytokine concentrations in the brain and serum of mice. Bipolar Disord. 2017;19:246-258. https://doi.org/10.1111/bdi.12503
  86. Rodrigues NR, Macedo GE, Martins IK, Gomes KK, de Carvalho NR, Posser T, Franco JL. Short-term sleep deprivation with exposure to nocturnal light alters mitochondrial bioenergetics in Drosophila. Free Radic Biol Med. 2018;120:395-406. https://doi.org/10.1016/j.freeradbiomed.2018.04.549
  87. Vosahlikova M, Roubalova L, Cechova K, Kaufman J, Musil S, Miksik I, Alda M, Svoboda P. Na+/K+ -ATPase and lipid peroxidation in forebrain cortex and hippocampus of sleep-deprived rats treated with therapeutic lithium concentration for different periods of time. Prog Neuropsychopharmacol Biol Psychiatry. 2020;102:109953.
  88. Qin B, Deng Y. Overexpression of circadian clock protein cryptochrome (CRY) 1 alleviates sleep deprivation-induced vascular inflammation in a mouse model. Immunol Lett. 2015;163:76-83. https://doi.org/10.1016/j.imlet.2014.11.014
  89. Yang L, Chu Y, Wang L, Wang Y, Zhao X, He W, Zhang P, Yang X, Liu X, Tian L, Li B, Dong S, Gao C. Overexpression of CRY1 protects against the development of atherosclerosis via the TLR/NF-κB pathway. Int Immunopharmacol. 2015;28:525-530. https://doi.org/10.1016/j.intimp.2015.07.001
  90. Schilperoort M, van den Berg R, Bosmans LA, van Os BW, Dolle MET, Smits NAM, Guichelaar T, van Baarle D, Koemans L, Berbee JFP, Deboer T, Meijer JH, de Vries MR, Vreeken D, van Gils JM, Willems van Dijk K, van Kerkhof LWM, Lutgens E, Biermasz NR, Rensen PCN, et al. Disruption of circadian rhythm by alternating light-dark cycles aggravates atherosclerosis development in APOE*3-Leiden.CETP mice. J Pineal Res. 2020;68:e12614.
  91. Carreras A, Zhang SX, Peris E, Qiao Z, Gileles-Hillel A, Li RC, Wang Y, Gozal D. Chronic sleep fragmentation induces endothelial dysfunction and structural vascular changes in mice. Sleep. 2014;37:1817-1824. https://doi.org/10.5665/sleep.4178
  92. Cherubini JM, Cheng JL, Williams JS, MacDonald MJ. Sleep deprivation and endothelial function: reconciling seminal evidence with recent perspectives. Am J Physiol Heart Circ Physiol. 2021;320:H29-H35. https://doi.org/10.1152/ajpheart.00607.2020
  93. Holmer BJ, Lapierre SS, Jake-Schoffman DE, Christou DD. Effects of sleep deprivation on endothelial function in adult humans: a systematic review. Geroscience. 2021;43:137-158. https://doi.org/10.1007/s11357-020-00312-y
  94. Papadakis Z, Forsse JS, Peterson MN. Acute partial sleep deprivation and high-intensity interval exercise effects on postprandial endothelial function. Eur J Appl Physiol. 2020;120:2431-2444. https://doi.org/10.1007/s00421-020-04468-5
  95. Nawi A, Eu KL, Faris ANA, Wan Ahmad WAN, Noordin L. Lipid peroxidation in the descending thoracic aorta of rats deprived of REM sleep using the inverted flowerpot technique. Exp Physiol. 2020;105:1223-1231. https://doi.org/10.1113/EP088667
  96. Sauvet F, Leftheriotis G, Gomez-Merino D, Langrume C, Drogou C, Van Beers P, Bourrilhon C, Florence G, Chennaoui M. Effect of acute sleep deprivation on vascular function in healthy subjects. J Appl Physiol (1985). 2010;108:68-75. https://doi.org/10.1152/japplphysiol.00851.2009
  97. Sauvet F, Drogou C, Bougard C, Arnal PJ, Dispersyn G, Bourrilhon C, Rabat A, Van Beers P, Gomez-Merino D, Faraut B, Leger D, Chennaoui M. Vascular response to 1 week of sleep restriction in healthy subjects. A metabolic response? Int J Cardiol. 2015;190:246-255. https://doi.org/10.1016/j.ijcard.2015.04.119
  98. Dettoni JL, Consolim-Colombo FM, Drager LF, Rubira MC, Souza SB, Irigoyen MC, Mostarda C, Borile S, Krieger EM, Moreno H Jr, Lorenzi-Filho G. Cardiovascular effects of partial sleep deprivation in healthy volunteers. J Appl Physiol (1985). 2012;113:232-236. https://doi.org/10.1152/japplphysiol.01604.2011
  99. Gutierrez-Monreal MA, Harmsen JF, Schrauwen P, Esser KA. Ticking for metabolic health: the skeletal-muscle clocks. Obesity (Silver Spring). 2020;28(Suppl 1):S46-S54.
  100. Jagannath A, Taylor L, Wakaf Z, Vasudevan SR, Foster RG. The genetics of circadian rhythms, sleep and health. Hum Mol Genet. 2017;26(R2):R128-R138. https://doi.org/10.1093/hmg/ddx240
  101. Xie Y, Tang Q, Chen G, Xie M, Yu S, Zhao J, Chen L. New insights into the circadian rhythm and its related diseases. Front Physiol. 2019;10:682.
  102. Jiang Q, Liu H, Wang S, Wang J, Tang Y, He Z, Wu F, Huang Z, Cong X, Ding R, Liang C. Circadian locomotor output cycles kaput accelerates atherosclerotic plaque formation by upregulating plasminogen activator inhibitor-1 expression. Acta Biochim Biophys Sin (Shanghai). 2018;50:869-879. https://doi.org/10.1093/abbs/gmy087
  103. Takeda N, Maemura K, Horie S, Oishi K, Imai Y, Harada T, Saito T, Shiga T, Amiya E, Manabe I, Ishida N, Nagai R. Thrombomodulin is a clock-controlled gene in vascular endothelial cells. J Biol Chem. 2007;282:32561-32567. https://doi.org/10.1074/jbc.M705692200
  104. Bain AR, Weil BR, Diehl KJ, Greiner JJ, Stauffer BL, DeSouza CA. Insufficient sleep is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation. Atherosclerosis. 2017;265:41-46. https://doi.org/10.1016/j.atherosclerosis.2017.08.001
  105. Sauvet F, Arnal PJ, Tardo-Dino PE, Drogou C, Van Beers P, Bougard C, Rabat A, Dispersyn G, Malgoyre A, Leger D, Gomez-Merino D, Chennaoui M. Protective effects of exercise training on endothelial dysfunction induced by total sleep deprivation in healthy subjects. Int J Cardiol. 2017;232:76-85. https://doi.org/10.1016/j.ijcard.2017.01.049
  106. Stockelman KA, Bain AR, Dow CA, Diehl KJ, Greiner JJ, Stauffer BL, DeSouza CA. Regular aerobic exercise counteracts endothelial vasomotor dysfunction associated with insufficient sleep. Am J Physiol Heart Circ Physiol. 2021;320:H1080-H1088. https://doi.org/10.1152/ajpheart.00615.2020
  107. Jiang J, Gan Z, Li Y, Zhao W, Li H, Zheng JP, Ke Y. REM sleep deprivation induces endothelial dysfunction and hypertension in middle-aged rats: roles of the eNOS/NO/cGMP pathway and supplementation with L-arginine. PLoS One. 2017;12:e0182746.
  108. Hijmans JG, Levy M, Garcia V, Lincenberg GM, Diehl KJ, Greiner JJ, Stauffer BL, DeSouza CA. Insufficient sleep is associated with a pro-atherogenic circulating microRNA signature. Exp Physiol. 2019;104:975-982. https://doi.org/10.1113/EP087469
  109. Jing R, Zhong QQ, Long TY, Pan W, Qian ZX. Downregulated miRNA-26a-5p induces the apoptosis of endothelial cells in coro- nary heart disease by inhibiting PI3K/AKT pathway. Eur Rev Med Pharmacol Sci. 2019;23:4940-4947.
  110. Nilsson EK, Bostrom AE, Mwinyi J, Schioth HB. Epigenomics of total acute sleep deprivation in relation to genome-wide DNA methylation profiles and RNA expression. OMICS. 2016;20:334-342. https://doi.org/10.1089/omi.2016.0041
  111. Gaine ME, Chatterjee S, Abel T. Sleep deprivation and the epig- enome. Front Neural Circuits. 2018;12:14.
  112. Hor CN, Yeung J, Jan M, Emmenegger Y, Hubbard J, Xenarios I, Naef F, Franken P. Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex. Proc Natl Acad Sci U S A. 2019;116:25773-25783. https://doi.org/10.1073/pnas.1910590116
  113. Fuller PM, Eikermann M. Genomic consequences of sleep restric- tion: the devil is in the details. Anaesthesia. 2019;74:417-419. https://doi.org/10.1111/anae.14479
  114. Cortese R, Khalyfa A, Bao R, Andrade J, Gozal D. Epigenomic profiling in visceral white adipose tissue of offspring of mice ex- posed to late gestational sleep fragmentation. Int J Obes (Lond). 2015;39:1135-1142. Erratum in: Int J Obes (Lond). 2015;39:1432