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ABSTRACT The presence of artificial light enables humans to be active 24 h a day. 
Many people across the globe live in a social culture that encourages staying up 
late to meet the demands of various activities, such as work and school. Sleep de-
privation (SD) is a severe health problem in modern society. Meanwhile, as with 
cardiometabolic disease, there was an obvious tendency that coronary heart disease 
(CHD) to become a global epidemic chronic disease. Specifically, SD can significantly 
increase the morbidity and mortality of CHD. However, the underlying mechanisms 
responsible for the effects of SD on CHD are multilayered and complex. Inflammatory 
response, lipid metabolism, oxidative stress, and endothelial function all contribute 
to cardiovascular lesions. In this review, the effects of SD on CHD development are 
summarized, and SD-related pathogenesis of coronary artery lesions is discussed. In 
general, early assessment of SD played a vital role in preventing the harmful conse-
quences of CHD.

INTRODUCTION
Many individuals globally live in a social culture that encour-

ages staying up late to meet the demands of various activities, 
such as work and school. The causes of poor sleep hygiene can 
include alcohol use, stimulant intake (including caffeine), and 
excessive Internet usage, as well as disease states, such as sleep ap-
nea, which prevent individuals from acquiring adequate sleep du-
ration and quality [1-8]. At the same time, shift work (e.g., night 
shifts) can change workers' sleep patterns, leading to emotional 
impulsiveness, reduced cognitive ability, diminished processing 
efficiency, and impaired executive function [9-15]. Further, shift 
workers have been shown to be at greater risk for the development 
of metabolic disorders and cardiovascular disease (CVD) [16-23].

Sleep deprivation (SD) has become a severe health problem in 
modern society. While adults require between seven and nine 
hours of sleep per night, more than a third sleep less than six [24]. 

The World Health Organization (WHO) defines sleep depriva-
tion as acute sleep restriction, with complete sleep deprivation de-
fined as no sleep ≥ 24 h and partial sleep deprivation (PSD) when 
an individual sleeps for four hours or less. Sleep disorders include 
chronic SD and acute SD, both of which have complex conse-
quences. SD can induce different biological effects, such as chang-
es in autonomic nervous system regulation, increased oxidative 
stress, changes in inflammatory and coagulation responses, and 
accelerated atherosclerosis progression [25-31]. These mecha-
nisms link SD with CVD and metabolic disorders [16,26,32-35].

Current epidemiological studies [34-45] have confirmed that 
SD is associated with increased incidence of CVDs, such as coro-
nary artery disease, hypertension, arrhythmia, diabetes, and 
obesity. People who sleep less than six hours a day are at increased 
risk of coronary heart disease (CHD), compared with those who 
sleep between six and nine hours a day [46]. Therefore, early 
assessment of SD is associated with preventing harmful conse-



298

https://doi.org/10.4196/kjpp.2022.26.5.297Korean J Physiol Pharmacol 2022;26(5):297-305

Wei R et al

quences of CVDs, such as CHD [47-51].

SD INCREASES THE RISK OF CHD
Short sleep duration is a key risk factor for CHD. In 2018, a 

cross-sectional study illustrated that the differences between 
heart age and chronological age were very slight in adults who 
slept seven hours per night. In contrast, differences significantly 
increased as sleep duration decreased or increased [52]. In 2018, 
a study involving 31,830 participants showed that people who 
slept less than six hours a day were significantly more likely to 
have non-fatal cardiovascular events than those who slept seven 
to eight hours [53]. According to epidemiological studies [54-57], 
abnormal sleep duration is a risk factor for CHD. Accordingly, 
several cross-sectional studies have shown that sleep duration 
of fewer than six hours significantly increases the risk of CHD, 
myocardial infarction (MI), non-fatal cardiovascular events, and 
cardiovascular death, as shown in Table 1 [53-56,58,59]. Com-
pared with optimal sleep duration, SD is significantly associated 
with CHD, with a U-shaped relationship between sleep duration 
and CHD observed [54-57].

SD increases the contracture and necrosis of cardiomyocytes 
after ischemia-reperfusion injury. In 2015, one study [60] using 
PSD as a model confirmed that myocardial electrical activity of 
PSD rats was abnormal, suggesting that PSD may cause myocar-
dial cell damage and that SD increases the risk of CHD. In 2015, 
a study using complete SD as a model [61] illustrated that, com-
pared with the control group, serum creatine phosphokinase and 
lactate dehydrogenase in the SD group significantly increased in 
a time-dependent manner. This study showed that SD leads to 
myocardial injury, and that the degree of myocardial injury was 
positively correlated with SD time.

Additionally, SD show a significant impact on MI. From 2016 
to 2018, Jeddi et al. [62,63] conducted a model of acute SD for 
96 h in rats, and found nitrite + nitrate levels and infarct area in 
the heart of SD rats were significantly higher than those in the 
control group. Compared with the control group, inducible nitric 
oxide synthase and BCL2-Associated X expression in SD rats in-
creased, while Bcl-2 expression decreased. At the same time, basal 
cardiac function and tolerance to ischemia-reperfusion injury 
was decreased in SD rats, which may be related to the increase of 

nitric oxide (NO) production after ischemia-reperfusion. In 2017, 
Aghajani et al. [64] conducted a model of chronic SD for six days 
in rats. SD after MI leads to heart enlargement at 21 days, marked 
by increased oxidative stress and NO production, as well as an 
imbalance of the ubiquitin-proteasome system. Together, these 
effects lead to cardiac dysfunction and heart failure.

Thus, both acute and chronic SD can cause myocardial injury, 
increase CHD risk, and aggravate ischemia-reperfusion injuries 
following myocardial events. Avoiding SD is of great significance 
for the prevention of CHD and post-MI treatment.

MECHANISMS OF CHD CAUSED BY SD
The mechanisms that are responsible for the effects of SD on 

CHD are multilayered and complex. Inflammatory response, 
lipid metabolism, oxidative stress, and endothelial function all 
contribute to essential factors leading to cardiovascular lesions. 
However, these changes are interrelated and form a network of 
risk factors for CHD (Fig. 1).

Inflammatory factors

The interaction between SD and immune disorders is bidi-
rectional, with SD triggering an inf lammatory response. In 
2015, Carroll et al. [65] conducted a cross-sectional study of 70 
volunteers, showed that PSD increased the production of the in-
flammatory cytokines interleukin-6 (IL-6) and tumor necrosis 
factor-α (TNF-α). Animal studies [66-68] have also shown that 
the levels of pro-inflammatory cytokines and markers in SD rats 
significantly increased. During acute SD, inflammation activated 
through the complementary C3a-C3aR and C5a-C5aR pathways. 
Phagocytes in the peripheral circulation, such as monocytes and 
neutrophils increased, while IL-6 and C-reactive protein also in-
creased. Production of circulating naive T cells and pro-inflam-
matory cytokines, such as IL-12, peaks at night, while production 
of cytotoxic effector leukocytes and anti-inflammatory cytokine 
IL-10 peaks during the day. Therefore, the circadian system and 
sleep work together to evoke a unique endocrine mechanism that 
effectively induces changes in white blood cell count and conver-
sion to pro-inflammatory type 1 cytokines during nocturnal 
sleep [69].

Table 1. Risk stratification and relative risk associated with sleep deprivation for coronary heart disease

Outcome Groups Sample size (n) OR 95% CI p-value

Angina [58] = 6 h 6,369 1.32 1.04–1.67 < 0.005
7 h Ref Ref Ref

CHD [59] < 6 h 15,594 1.24 1.12–1.37 4.09E-05
6–9 h Ref Ref Ref

MI [59] < 6 h 14,871 1.21 1.09–1.34 3.81E-04
6–9 h Ref Ref Ref

CHD, coronary heart disease; MI, myocardial infarction; Ref, reference; OR: odds ratio; CI, confidence interval.
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In 2019, Said et al. [70] and De Lorenzo et al. [71], through ex-
amination of multiple models, showed that chronic SD may lead 
to changes in the balance of TH1-related chemokines, resulting 
in dysfunction in the distribution of circulating white blood cells, 
affecting neutrophil phagocytosis and nicotinamide adenine 
dinucleotide phosphate oxidase activity, leading to decreased 
CD4+ and CD8+ T cells in peripheral blood, and ultimately, 
resulting in immunosuppression. At the same time, diminished 
sleep duration leads to a decrease in the production of hypocre-
tin (a neuropeptide that stimulates and promotes arousal) in the 
lateral hypothalamus. Additionally, SD results in an increase in 
the production of colony-stimulating factor-1 in hematopoietic 
cells. Colony-stimulating factor-1 induces the generation of mac-
rophages and Ly-6Chigh monocytes. These inflammatory cells 
induce atherosclerotic lesions [72]. Therefore, SD induces inflam-
matory responses and the release of inflammatory mediators [66-
68]. Pro-inflammatory mediators and inflammatory cells play an 
essential role in myocardial injury by inducing atherosclerosis, 
MI, apoptosis, and reperfusion injury.

Abnormal lipid metabolism

SD has a strong effect on lipid metabolism, which leads to ath-
erosclerosis. In 2011, Kong et al. [73] published a cross-sectional 
study of a sample from Hong Kong, China. The study showed 
that children with long sleep duration had significantly reduced 
total cholesterol (TC) and low-density lipoprotein cholesterol 
(LDL-C) levels compared with children with short sleep dura-
tion. Reduced sleep duration was also found to be associated with 
obesity and atherosclerotic dyslipidemia in young Hong Kong 
children. In 2019, Ness et al. [74] published a prospective study 
of 15 volunteers, and found that PSD for five days affected non-

esterified fatty acid (NEFA) metabolism. A separate perspective 
cohort study [75] demonstrated a significant association between 
serum total NEFA concentration and the incidence of CHD mor-
tality and non-fatal myocardial infarction.

In 2020, animal experiments conducted by Xing et al. [76] 
showed that after acute sleep deprivation 72 h in rats and mice, 
nuclear receptor subfamily 1 group D member 1-mediated inhibi-
tion of cholesterol 7α-hydroxylase can lead to elevated serum cho-
lesterol level, hepatic cholesterol accumulation. At the same time, 
this may be related to the fact that sleep deprivation disrupted 
the secondary biological clock of mice [77]. It broke the rhythm 
of the inositol-requiring enzyme-1α pathway in the endoplasmic 
reticulum, and brought about incongruous expression levels of 
enzymes, which involved in fatty acid and cholesterol metabo-
lism. Ultimately, the above mechanism caused impaired lipid 
metabolism. Long-term and uncontrolled exposure to hypercho-
lesterolemia can lead to slowly progressive cardiovascular events 
[78]. In 2019, Wilms et al. [79] enrolled 15 healthy young men. 
They were assigned to three groups: regular sleep schedule (8 h), 
sleep restriction (4 h), and sleep deprivation (no sleep at all). The 
results showed that acute sleep deprivation leaded to profound 
remodelling of the transcriptomes of white adipose tissue (WAT), 
resulting in increased carbohydrate turnover and impaired glu-
cose homeostasis. There are robust rhythms throughout WAT 
as well as subcutaneous adipose stem cells. These factors are 
connected with circadian rhythmic neuroendocrine hormones, 
such as growth hormone and glucocorticoids, both of which are 
known to affect the function and quality of adipose tissue [80]. 
Sleep deprivation causes hormonal changes, and there are com-
plicated relationship between subtle hormonal changes and lipid 
metabolism disorders.

Fig. 1. Sleep deprivation and the pathogenesis of coronary heart disease. NR1D1, nuclear receptor subfamily 1 group D member 1; CYP7A1, 
cholesterol 7α-hydroxylase; IRE1α ,Inositol-requiring enzyme-1α; CCL2, chemokine C-C motif ligand 2; CCR2, chemokine C-C-motif receptor 2; CCGs, 
CLOCK control genes; BMAL2, brain-muscle-ARNT-like protein-2; PAI-1, plasminogen activator inhibitor-1; TM, thrombomodulin; PI3K, phosphatidyl 
inositol-3 kinase; Akt, protein kinase B; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; cGMP, cyclic guanosine monophosphate; cAMP, cyclic 
adenosine monophosphate; PKA, protein kinase A; TLR, toll-like receptor; NF-κB, nuclear factor kappa B.
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Oxidative stress

Many studies have shown that SD can aggravate myocardial 
ischemia-reperfusion injury by increasing energy consumption, 
decreasing antioxidant capacity, increasing oxygen free radical 
accumulation, and aggravating endoplasmic reticulum stress. 
Chronic circadian disruption usually activates the adaptive stress 
response. However, endoplasmic reticulum stress is the dominat-
ing catalyst of cell death in atherosclerosis. Figueiro et al. [81] 
found that GRP78/BiP, an endoplasmic reticulum chaperone for 
endoplasmic reticulum stress, was approximately 3 times higher 
in the macrophage-rich region of plaques for sleep-deprived mice 
than normal group. Arterial foam cells have a circadian rhythm 
response. Sleep deprivation can destroy the molecular clock of 
them and increase endoplasmic reticulum stress and apoptosis.

In 2005, Everson et al. [82] found catalase activity and glutathi-
one content in the liver decreased by 23%–36% in rats subjected 
to five and ten days of SD, which continued or worsened with 
prolonged SD. Prospective studies involving volunteers by Trivedi 
et al. [83] and Jówko et al. [84] showed that after 24 h of acute SD, 
levels of glutathione, adenosine triphosphate (ATP), cysteine, and 
homocysteine decreased significantly, while activity of glutathi-
one peroxidase and erythrocyte superoxide dismutase decreased, 
and the residual total antioxidant capacity in plasma increased.

Valvassori et al. [85], Rodrigues et al. [86], and Vosahlikova et 
al. [87], using acute sleep models, found that SD increased lipid 
peroxidation and DNA oxidative damage by down-regulating 
Na+/K+-ATPase activity, and caused changes in antioxidant en-
zymes in the frontal cortex, hippocampus, and serum, increased 
reactive oxygen species production, impaired mitochondrial 
biological ability, and affected mitochondrial activity, antioxidant 
defense enzyme, and caspase activity, which reduced oxidative 
phosphorylation and electron transport system respiration. In 
2014, Qin and Deng [88], using a mouse model of SD lasting for 
seven days, found that SD increased inflammation and oxidative 
stress, and decreased the expression of cryptopigment-1 (CRY1) 
in vascular endothelial cells. Furthermore, the plaque area of the 
aortic sinus and the concentrations of TC, triglyceride, and LDL-
C were also decreased in atherosclerotic mice by CRY1 overex-
pression. Overexpression of CYR1 relieves the development of 
atherosclerosis that may be associated with regulation of the toll-
like receptor (TLR)/nuclear factor kappa B (NF-κB) and cyclic 
adenosine monophosphate/protein kinase A (cAMP/PKA) path-
way [88,89]. In 2020, Schilperoort et al. [90] observed increased 
expression of chemokine C-C motif ligand 2 (CCL2) protein in 
atherosclerotic lesions of mice, which exposed to alternating light 
and dark cycles. CCL2 is a chemokine that actively recruited 
monocytes to the site of endothelial injury. Inflammation and 
oxidative stress can induce CCL2 expression. CCL2-CCR2 axis 
plays an essential role in atherosclerosis. Therefore, oxidative 
stress and inflammation are the fundamental driving factors of 
endothelial dysfunction.

Endothelial dysfunction

Vascular homeostasis and maintenance of endothelial func-
tion demonstrated functional rhythm oscillations synchronized 
with the 24-h diurnal cycle. Sleep disorders related to inflamma-
tion and sympathetic activation lead to a change in blood vessel 
architecture, characterized by elastic fiber fracture and disorder, 
an increase in inflammatory cells, lipid peroxidation, inflamma-
tion, and sympathetic activation, which may induce endothelial 
dysfunction. Endothelial dysfunction is a critical factor in the 
increased risk of CVD [91-95]. In models of acute and chronic 
SD in healthy volunteers, Sauvet et al. [96,97], Dettoni et al. [98], 
measured biomarkers of microvascular reactivity and endothelial 
activation, elevated plasma E-selectin levels, and significantly 
increased sympathetic neural activity during SD. Increased se-
rum norepinephrine decreased endothelium-dependent venous 
dilatation, increased venous endothelial dysfunction, decreased 
endothelium-dependent vascular dilatation, and decreased lo-
cal endothelial tolerance. Meanwhile, vascular dysfunction may 
precede and be independent of sympathetic nerve activity and 
systolic blood pressure increases. This suggests that endothelial 
dysfunction is not associated with blood pressure and sympa-
thetic activity, but with inflammation and metabolic pathway 
responses.

More than 40% of protein-coding genes in human cells are 
controled by circadian clock gene, which showed tissue-specific 
circadian oscillations through clock-controlled transcription 
factors [99]. Many of these genes, which called CLOCK control 
genes (CCGs), played specific roles in regulating atherosclerosis of 
endothelial cells. Transcription factors brain-muscle-ARNT-like 
protein-2 (BMAL1) and CLOCK heterodimers combined with 
the promoter region of the period (PER1/2) and cryptochrome 
(CRY1/2) genes [100,101]. CLOCK/BMAL2 heterodimers inte-
grated promoters of endothelial CCGs in the e-box enhancer 
region, such as plasminogen activator inhibitor-1 (PAI-1) and 
thrombomodulin (TM) [102,103]. Both PAI-1 and TM are tightly 
associated with endothelial activation and the development of 
atherosclerotic plaques. Short sleep duration may exacerbate the 
instability of atherosclerosis and plaque by regulating CCGs ex-
pression in endothelial cells.

NO-mediated impairment of vasodilation contributes to ath-
erosclerotic vascular disease and acute cardiovascular events. 
Prospective studies by Bain et al. [104], Sauvet et al. [105], and 
Stockelman et al. [106] showed that short sleep duration at night 
was associated with endothelium-dependent vasodilation dys-
function. This may be partly due to reduced bioavailability of NO, 
which leads to impaired vasodilation. At the same time, acetyl-
choline induces a decrease in vasodilation by increasing the con-
centration of pro-inflammatory cytokine TNF-α. endothelin-1 
mediated increased vasoconstriction, resulting in increased pulse 
wave velocity, decreased vascular elasticity, and ultimately in-
creased cardiovascular risk. In 2017, Jiang et al. [107] showed that 
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the concentration of NO and cyclic guanosine phosphate (cGMP) 
and the phosphorylation level of endothelial NO synthase (eNOS) 
in the aorta decreased in rats subjected to five days of rapid move-
ment SD. This suggests that SD can cause endothelial dysfunction 
and hypertension in middle-aged rats through the eNOS/NO/
cGMP pathway.

Recent studies [108] have shown that chronic SD is associated 
with significantly reduced circulating levels of miRNA-125a, 
miRNA-126, and miRNA-146a. Dysregulation of these miRNAs 
may lead to increased inflammatory burden and endothelial 
dysfunction. miRNA-26a-5p induces the apoptosis of endothelial 
cells in CHD by inhibiting phosphatidyl inositol-3 kinase/protein 
kinase B pathway [109]. Acute SD alters methylation levels in 
healthy individuals [110]. These epigenomic changes may be used 
as biomarkers for sleep loss or as therapeutic targets for sleep-
related diseases [111-114].

SUMMARY
CHD, like CVD, is a critical problem threatening human 

health. SD is significantly associated with increased morbidity 
and mortality of CHD. Mate analysis showed a U-shaped rela-
tionship between sleep duration and the risk of CHD morbidity 
and mortality; sleep duration < 6.5 h/d was a risk factor of CHD, 
and increased the risk of CHD morbidity and mortality. However, 
its pathogenesis is complex and is the focus of current research. 
The experimental data reviewed in this paper show that inflam-
matory response, lipid metabolism, oxidative stress, and endo-
thelial function are essential factors leading to vascular lesions, 
as shown in Fig. 1. In general, ensuring adequate sleep time to 
prevent CHD and MI after treatment is significant. Specifically, 
early intervention and treatment of SD can reduce cardiovascular 
morbidity and mortality among night shift workers.
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