DOI QR코드

DOI QR Code

모바일 기기에서 이상치 데이터 처리 정책에 따른 배터리 잔여 시간 예측 기법의 평가

Performance Evaluation of Battery Remaining Time Estimation Methods According to Outlier Data Processing Policies in Mobile Devices

  • Tak, Sungwoo (School of Computer Science and Engineering, Pusan National University)
  • 투고 : 2022.05.12
  • 심사 : 2022.06.08
  • 발행 : 2022.07.31

초록

모바일 기기 배터리의 잔여 시간 예측은 배터리 잔량별 사용 시간 데이터의 분포 특성에 영향을 받는다. 특히 이상치 데이터가 존재하는 경우, 통계적 회귀 기법의 예측 성능을 왜곡시킬 수 있다. 이에 본 논문에서는 통계적 회귀 기법의 예측 성능 향상을 위해 이상치 데이터를 탐지 및 처리하는 프레임워크를 제안하였다. 제안한 프레임워크는 먼저 배터리 잔여 시간 예측에 영향을 주는 이상치 데이터를 탐지한다. 탐지된 이상치 데이터는 평활 과정을 통해 새로운 값으로 치환된 후, 이상치 데이터와 치환된 데이터 간의 차이를 개별 데이터에 분배한다. 마지막으로 개별 데이터를 재강화하여 예측 성능을 향상시키고자 한다. 제안한 프레임워크의 성능 분석을 수행한 결과, 배터리 잔여 시간의 예측 성능이 향상됨을 확인하였다.

The distribution patterns of battery usage time data per battery level are able to affect the performance of estimating battery remaining time in mobile devices. Outliers may mainly affect the estimation performance of statistical regression methods. In this paper, we propose a software framework that detects and processes outliers to improve the estimation performance of statistical regression methods. The proposed framework first detects outliers that degrade the estimation performance. The proposed framework replaces outliers with smoothed data. The difference between an outlier and its replaced data will be properly distributed into individual data. Finally, individual data are reinforced to improve the estimation performance. The numerical results obtained by experimenting the proposed framework confirmed that it yielded good performance of estimating battery remaining time.

키워드

과제정보

This work was supported by a 2-Year Research Grant of Pusan National University.

참고문헌

  1. R. Wilcox, Introduction to robust estimation and hypothesis testing, 5th ed. San Diego, CA: Academic Press, 2021.
  2. H. Wang, H. Li, J. Fang, and H. Wang, "Robust Gaussian Kalman Filter with Outlier Detection," IEEE Signal Processing Letters, vol. 25, no. 8, pp. 1236-1240, Jun. 2018. https://doi.org/10.1109/lsp.2018.2851156
  3. H. M. Khalid, Q. Ahmed, and J. C. -H. Peng, "Health monitoring of Li-Ion battery systems: A median expectation diagnosis approach (MEDA)," IEEE Transactions on Transportation Electrification, vol. 1, no. 1, pp. 94-105, Jun. 2015. https://doi.org/10.1109/TTE.2015.2426431
  4. D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, 6th ed. Hoboken, NJ: Wiley & Sons, 2021.
  5. T. Kim, A. Adhikaree, R. Pandey, D. Kang, M. Kim, C. Oh, and J. Back, "Outlier mining-based fault diagnosis for multicell lithium-Ion batteries using a low-priced microcontroller," in Proceeding of IEEE Applied Power Electronics Conference and Exposition, San Antonio: TX, USA, pp. 3365-3369, 2011.
  6. J. Jiang, X. Cong, S. Li, C. Zhang, W. Zhang, and Y. Jiang, "A Hybrid Signal-based Fault Diagnosis Method for Lithium-ion Batteries in Electric Vehicles," IEEE Access, vol. 9, pp. 19175-19186, Jan. 2021. https://doi.org/10.1109/ACCESS.2021.3052866
  7. Q. Quyang, J. hen, and J. Zheng, "State-of-Charge Observer Design for Batteries with Online Model Parameter Identification: A Robust Approach," IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 5820-5831, Jun. 2020. https://doi.org/10.1109/tpel.2019.2948253
  8. B. Kovacevie, M. M. Milosavljevie, and M. D. Veinovic, "Robust recursive AR speech analysis," Signal Processing, vol. 44, no. 2, pp. 125-138, Jun. 1995. https://doi.org/10.1016/0165-1684(95)00019-A
  9. D. C. Hoaglin and R. E. Welsch, "The hat matrix in regression and ANOVA," The American Statistician, vol. 32, no. 1, pp. 17-22, Jan. 1977. https://doi.org/10.2307/2683469
  10. R. R. Wilcox, Fundamentals of Modern Statistical Methods, 2nd ed. Los Angeles, CA: Springer, 2010.
  11. W. Mendenhall and T. T. Sinich, A second course in statistics: regression analysis, 8th ed. Hoboken, NJ: Pearson, 2019.
  12. M. Kuhn and K. Johnson, Applied predictive modeling, 2nd ed. New York, NY: Springer, 2018.
  13. A. Saksonov, "Method to derive energy profiles for android platform," M. S. thesis, University of Oldenburg, Oldenburg, Lower Saxony, 2014