DOI QR코드

DOI QR Code

Effect of irrigants on the color stability, solubility, and surface characteristics of calcium-silicate based cements

  • Selen Kucukkaya Eren (Department of Endodontics, Faculty of Dentistry, Hacettepe University) ;
  • Sevinc Askerbeyli Ors (Department of Endodontics, Faculty of Dentistry, Hacettepe University) ;
  • Hacer Aksel (Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo) ;
  • Senay Canay (Department of Prosthodontics, Faculty of Dentistry, Hacettepe University) ;
  • Duygu Karasan (Division of Prosthodontics, Clinique Universitaire de Médecine Dentaire (CUMD), University of Geneva)
  • Received : 2021.02.04
  • Accepted : 2021.04.12
  • Published : 2022.02.28

Abstract

Objectives: This study aimed to investigate the color stability, solubility, and surface characteristics of 3 calcium silicate-based cements (CSCs) after immersion in different solutions. Materials and Methods: ProRoot white mineral trioxide aggregate (MTA), Biodentine, and Endosequence Root Repair Material (ERRM) were placed in cylindrical molds and stored at 37℃ for 24 hours. Each specimen was immersed in distilled water, 5% sodium hypochlorite (NaOCl), 2% chlorhexidine, or 0.1% octenidine hydrochloride (OCT) for 24 hours. Color changes were measured with a spectrophotometer. Solubility was determined using an analytical balance with 10-5 g accuracy. The surface characteristics were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. Data were analyzed using 2-way analysis of variance, the Tukey test, and the paired t-test. Results: MTA exhibited significant discoloration in contact with NaOCl (p < 0.05). White precipitation occurred on the surfaces of Biodentine and ERRM after contact with the solutions, and none of the materials presented dark brown discoloration. All materials showed significant solubility after immersion in the solutions (p < 0.05), irrespective of the solution type (p > 0.05). The surface topography and elemental composition of the samples showed different patterns of crystal formation and precipitation depending on the solution type. Conclusions: All materials presented some amount of solubility and showed crystal precipitation after contact with the solutions. Biodentine and ERRM are suitable alternatives to ProRoot MTA as they do not exhibit discoloration. The use of OCT can be considered safe for CSCs.

Keywords

References

  1. Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 1999;25:197-205. https://doi.org/10.1016/S0099-2399(99)80142-3
  2. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--part III: clinical applications, drawbacks, and mechanism of action. J Endod 2010;36:400-413. https://doi.org/10.1016/j.joen.2009.09.009
  3. Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J 2018;51:177-205. https://doi.org/10.1111/iej.12841
  4. Dawood AE, Parashos P, Wong RHK, Reynolds EC, Manton DJ. Calcium silicate-based cements: composition, properties, and clinical applications. J Investig Clin Dent 2017;8:e12195.
  5. Zehnder M. Root canal irrigants. J Endod 2006;32:389-398. https://doi.org/10.1016/j.joen.2005.09.014
  6. Nocca G, Ahmed HMA, Martorana GE, Calla C, Gambarini G, Rengo S, Spagnuolo G. Chromographic analysis and cytotoxic effects of chlorhexidine and sodium hypochlorite reaction mixtures. J Endod 2017;43:1545-1552. https://doi.org/10.1016/j.joen.2017.04.025
  7. Tandjung L, Waltimo T, Hauser I, Heide P, Decker EM, Weiger R. Octenidine in root canal and dentine disinfection ex vivo. Int Endod J 2007;40:845-851. https://doi.org/10.1111/j.1365-2591.2007.01279.x
  8. Sedlock DM, Bailey DM. Microbicidal activity of octenidine hydrochloride, a new alkanediylbis[pyridine] germicidal agent. Antimicrob Agents Chemother 1985;28:786-790. https://doi.org/10.1128/AAC.28.6.786
  9. Tirali RE, Turan Y, Akal N, Karahan ZC. In vitro antimicrobial activity of several concentrations of NaOCl and Octenisept in elimination of endodontic pathogens. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:e117-e120.
  10. Bukhary S, Balto H. Antibacterial efficacy of octenisept, alexidine, chlorhexidine, and sodium hypochlorite against Enterococcus faecalis biofilms. J Endod 2017;43:643-647. https://doi.org/10.1016/j.joen.2016.09.013
  11. Tirali RE, Bodur H, Sipahi B, Sungurtekin E. Evaluation of the antimicrobial activities of chlorhexidine gluconate, sodium hypochlorite and octenidine hydrochloride in vitro. Aust Endod J 2013;39:15-18. https://doi.org/10.1111/j.1747-4477.2010.00266.x
  12. Thaha KA, Varma RL, Nair MG, Sam Joseph VG, Krishnan U. Interaction between octenidine-based solution and sodium hypochlorite: a mass spectroscopy, proton nuclear magnetic resonance, and scanning electron microscopy-based observational study. J Endod 2017;43:135-140. https://doi.org/10.1016/j.joen.2016.09.015
  13. Krishnan U, Saji S, Clarkson R, Lalloo R, Moule AJ. Free active chlorine in sodium hypochlorite solutions admixed with Octenidine, SmearOFF, Chlorhexidine, and EDTA. J Endod 2017;43:1354-1359. https://doi.org/10.1016/j.joen.2017.03.034
  14. Coaguila-Llerena H, Rodrigues EM, Santos CS, Ramos SG, Medeiros MC, Chavez-Andrade GM, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Faria G. Effects of octenidine applied alone or mixed with sodium hypochlorite on eukaryotic cells. Int Endod J 2020;53:1264-1274. https://doi.org/10.1111/iej.13347
  15. Coaguila-Llerena H, Stefanini da Silva V, Tanomaru-Filho M, Guerreiro Tanomaru JM, Faria G. Cleaning capacity of octenidine as root canal irrigant: a scanning electron microscopy study. Microsc Res Tech 2018;81:523-527. https://doi.org/10.1002/jemt.23007
  16. Nagas E, Cehreli ZC, Uyanik MO, Durmaz V, Vallittu PK, Lassila LV. Bond strength of mineral trioxide aggregate to root dentin after exposure to different irrigation solutions. Dent Traumatol 2014;30:246-249. https://doi.org/10.1111/edt.12070
  17. Chu JHR, Chia KY, Qui AL, Moule A, Ha WN. The effects of sodium hypochlorite and ethylenediaminetetraacetic acid on the microhardness of Mineral Trioxide Aggregate and TotalFill Bioceramic Putty. Aust Endod J 2020;46:33-39. https://doi.org/10.1111/aej.12352
  18. Keskin C, Demiryurek EO, Ozyurek T. Color stabilities of calcium silicate-based materials in contact with different irrigation solutions. J Endod 2015;41:409-411. https://doi.org/10.1016/j.joen.2014.11.013
  19. Camilleri J. Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J Endod 2014;40:436-440. https://doi.org/10.1016/j.joen.2013.09.040
  20. Krupp C, Bargholz C, Brusehaber M, Hulsmann M. Treatment outcome after repair of root perforations with mineral trioxide aggregate: a retrospective evaluation of 90 teeth. J Endod 2013;39:1364-1368. https://doi.org/10.1016/j.joen.2013.06.030
  21. Gandolfi MG, Siboni F, Botero T, Bossu M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater 2015;13:43-60.
  22. Singh S, Podar R, Dadu S, Kulkarni G, Purba R. Solubility of a new calcium silicate-based root-end filling material. J Conserv Dent 2015;18:149-153. https://doi.org/10.4103/0972-0707.153053
  23. Camilleri J. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent Mater 2011;27:836-844. https://doi.org/10.1016/j.dental.2011.04.010
  24. Arias-Moliz MT, Farrugia C, Lung CYK, Wismayer PS, Camilleri J. Antimicrobial and biological activity of leachate from light curable pulp capping materials. J Dent 2017;64:45-51. https://doi.org/10.1016/j.jdent.2017.06.006
  25. Natale LC, Rodrigues MC, Xavier TA, Simoes A, de Souza DN, Braga RR. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping. Int Endod J 2015;48:89-94. https://doi.org/10.1111/iej.12281
  26. Aksel H, Kucukkaya Eren S, Askerbeyli Õrs S, Karaismailoglu E. Surface and vertical dimensional changes of mineral trioxide aggregate and biodentine in different environmental conditions. J Appl Oral Sci 2018;27:e20180093.
  27. Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater 2013;29:e20-e28. https://doi.org/10.1016/j.dental.2012.11.007
  28. Choi Y, Park SJ, Lee SH, Hwang YC, Yu MK, Min KS. Biological effects and washout resistance of a newly developed fast-setting pozzolan cement. J Endod 2013;39:467-472. https://doi.org/10.1016/j.joen.2012.11.023
  29. Mozynska J, Metlerski M, Lipski M, Nowicka A. Tooth discoloration induced by different calcium silicate-based cements: a systematic review of in vitro studies. J Endod 2017;43:1593-1601. https://doi.org/10.1016/j.joen.2017.04.002
  30. Kang SH, Shin YS, Lee HS, Kim SO, Shin Y, Jung IY, Song JS. Color changes of teeth after treatment with various mineral trioxide aggregate-based materials: an ex vivo study. J Endod 2015;41:737-741. https://doi.org/10.1016/j.joen.2015.01.019
  31. Camilleri J. Staining potential of Neo MTA Plus, MTA Plus, and Biodentine used for pulpotomy procedures. J Endod 2015;41:1139-1145. https://doi.org/10.1016/j.joen.2015.02.032
  32. Neelakantan P, Berger T, Primus C, Shemesh H, Wesselink PR. Acidic and alkaline chemicals' influence on a tricalcium silicate-based dental biomaterial. J Biomed Mater Res B Appl Biomater 2019;107:377-387. https://doi.org/10.1002/jbm.b.34129
  33. Jacinto RC, Linhares-Farina G, Sposito OS, Zanchi CH, Cenci MS. Influence of 2% chlorhexidine on pH, calcium release and setting time of a resinous MTA-based root-end filling material. Braz Oral Res 2015;29:1-6.
  34. Han L, Okiji T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J 2011;44:1081-1087. https://doi.org/10.1111/j.1365-2591.2011.01924.x
  35. Han L, Okiji T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J 2013;46:808-814. https://doi.org/10.1111/iej.12062
  36. Elnaghy AM. Influence of acidic environment on properties of biodentine and white mineral trioxide aggregate: a comparative study. J Endod 2014;40:953-957. https://doi.org/10.1016/j.joen.2013.11.007
  37. Wang Z, Ma J, Shen Y, Haapasalo M. Acidic pH weakens the microhardness and microstructure of three tricalcium silicate materials. Int Endod J 2015;48:323-332. https://doi.org/10.1111/iej.12318
  38. Yan P, Peng B, Fan B, Fan M, Bian Z. The effects of sodium hypochlorite (5.25%), Chlorhexidine (2%), and Glyde File Prep on the bond strength of MTA-dentin. J Endod 2006;32:58-60. https://doi.org/10.1016/j.joen.2005.10.016
  39. Barbin LE, Saquy PC, Guedes DF, Sousa-Neto MD, Estrela C, Pecora JD. Determination of parachloroaniline and reactive oxygen species in chlorhexidine and chlorhexidine associated with calcium hydroxide. J Endod 2008;34:1508-1514. https://doi.org/10.1016/j.joen.2008.08.032
  40. Barbin LE, Estrela C, Guedes DF, Spano JC, Sousa-Neto MD, Pecora JD. Detection of para-chloroaniline, reactive oxygen species, and 1-chloro-4-nitrobenzene in high concentrations of chlorhexidine and in a mixture of chlorhexidine and calcium hydroxide. J Endod 2013;39:664-668. https://doi.org/10.1016/j.joen.2012.10.018